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Abstract
This article establishes grounds on which attributions of information and encoding in animal signals are warranted. As 
common interest increases between evolutionary agents, the theoretical approach best suited to describing their interaction 
shifts from evolutionary game theory to communication theory, which warrants informational language. The take-home 
positive message is that in cooperative settings, signals can appropriately be described as transmitting encoded information, 
regardless of the cognitive powers of signalers. The canonical example is the honeybee waggle dance, which is discussed 
extensively in the second and third sections. The take-home negative message is that signals are not always a consequence 
of coadaptation. The communication theory approach is just one end of a continuum explored more thoroughly by evolu-
tionary game theory. The fourth and fifth sections explore this wider framework, as well as overturning some widely held 
misconceptions about information theory.

Keywords Animal communication · Behavioral ecology · Communication theory · Evolutionary game theory · 
Teleosemantics

Introduction: The Information Debate 
in Behavioral Ecology

This article establishes grounds on which attributions of 
information in animal signals are warranted. Informational 
language is most appropriate when signaling behavior is the 
result of coadaptation. Animal interactions are more gen-
erally understood through the lens of evolutionary game 
theory. As common interest increases between evolutionary 
agents, the theoretical approach best suited to describing 
their interaction shifts from game theory to communication 
theory, which warrants informational language.

The article proceeds in a slightly unusual form. The 
remainder of this section is given over to outlining the con-
text of the controversy surrounding information concepts 
in behavioral ecology. Then, a very early information-
theoretic approach to animal signaling, which provides an 
informational measurement of the honeybee waggle dance, 
is described in the next section. In the following section 
some recent mathematical objections to that early work are 

rebutted. In the next section on “Wider Considerations,” 
broader skeptical arguments concerning the use of informa-
tional concepts in animal communication theory are con-
sidered. Although the outlook is generally positive, skepti-
cal arguments are only partly rejected. Finally, in the last 
section before the conclusion, prospects for extending the 
use of informational concepts to other animal signals are 
considered. Although several lines of skepticism have been 
conflated and some are inappropriate, there remain grounds 
for caution.

Overall, several lines of argument are presented in favor 
of the use of information theory for studying certain bio-
logical communication systems. Throughout, a positive pro-
posal is advanced for the interpretation of information in 
biological signals. Information is a measure of the accuracy 
with which a receiver’s goal is achieved, or equivalently, the 
extent to which a receiver’s biological capacity is realized. 
In our case study, which focuses on the waggle dance of the 
honeybee Apis mellifera, the goal is finding food. Insofar 
as receiver bees have a greater probability of finding food 
after having followed a dance, information is transmitted by 
dancing bees. It is this notion of transmission that consti-
tutes grounds for application of the information concept, and 
related mathematical tools, in studies of biological signaling.

 * Stephen Francis Mann 
 stephenfmann@gmail.com

1 School of Philosophy, Australian National University, 
Canberra, ACT , Australia

http://orcid.org/0000-0002-4136-8595
http://crossmark.crossref.org/dialog/?doi=10.1007/s13752-018-0299-5&domain=pdf


165Attribution of Information in Animal Interaction  

1 3

The take-home positive message is that the communi-
cation theory approach is a special case that emerges as 
signaler and receiver interests become aligned. These con-
siderations give grounds for optimism about the use of infor-
mational concepts and measurements in behavioral ecology 
and, more generally, biology. Paradigmatic cases of infor-
mation transmission are those in which the form of the sig-
nal is designed by coadaptation of signaler and receiver. In 
these cases, signal structure can appropriately be described 
in terms of a “code.” Consequently, the take-home negative 
message is that signals are not always shaped exclusively by 
coadaptation. The communication theory approach is just 
one end of a continuum explored more thoroughly by evolu-
tionary game theory. As a result, signal form may not always 
be explicable by reference to encoding, at least not as it is 
now understood. Whether or not signals are manipulative or 
coadaptive will be an empirical question in each case.

Background

By the late 1970s, animal signals were typically defined in 
terms of information. Signal evolution was thought to mainly 
proceed via ritualization of cues. Since ritualization is a pro-
cess of coadaptation, signals were viewed as primarily coop-
erative, despite the possibility of deception and exploitation. 
In the face of this orthodoxy, Dawkins and Krebs (1978) 
offered a different approach. They proposed that communi-
cation be seen as one animal controlling another, typically 
by exploiting perceptual mechanisms designed for other 
purposes. Due to the individualistic operation of natural 
selection, cooperation and coadaptation are rare (Dawkins 
and Krebs 1978, p. 289). Consequently, we should adopt an 
individualistic account of communication, one that places 
the signaler front and center.

More recently, in a series of individual and joint papers, 
Michael J. Owren, Drew Rendall, and Michael J. Ryan 
(hereafter ORR) present significant challenges to the use 
of informational concepts in animal communication studies 
(Rendall et al. 2009; Owren et al. 2010; Rendall and Owren 
2013; Ryan 2013). Information, they claim, is an insubstan-
tial metaphor that cannot do explanatory work and often 
misleads us as to the nature of signaling behavior. Several 
behavioral ecology texts go so far as to define communica-
tion in terms of information, without ever fully explicating 
the latter (see Rendall et al. (2009, Table 1) for examples). 
Instead, ORR propose a definition of signaling akin to that 
of Dawkins and Krebs, in terms of the influence one ani-
mal exerts over another.1 Further skepticism is advanced by 

Sarkar (2013), who discusses the honeybee waggle dance 
along with wider issues of animal signaling. Sarkar claims 
different informational concepts have been conflated in the 
literature, and that as a result informational measurements 
do not capture the quantities claimed by those who employ 
them.

It is in the light of this skepticism that the present article 
is offered. The honeybee waggle dance is one of the most 
thoroughly studied animal communication systems in nature. 
It is characterized by an unusually high level of common 
interest which, I argue below, renders it suitable for infor-
mational analysis. I shall first describe, in the next section, 
one informational measurement of the honeybee waggle 
dance and respond in the following section to preliminary 
mathematical objections as to its validity. I will then face the 
problems raised by ORR, Sarkar, and others that apply more 
forcefully when we consider instances of communication not 
characterized by high common interest.

The Honeybee Waggle Dance

“The” honeybee waggle dance is rather a family of commu-
nicative behaviors performed by all seven species of hon-
eybee (Beekman et al. 2015, p. 1). Six species are native to 
Southeast Asia, but the seventh—the Western honeybee, A. 
mellifera—is widespread in Europe, Africa, and Asia and 
has been domesticated since antiquity, making it uniquely 
amenable to scientific study. Western honeybees perform 
the waggle dance when foraging and searching for new nest 
sites. The works discussed here focus on A. mellifera forag-
ing at artificial feeders and performing the waggle dance 
on a vertical surface inside the hive (see, for example, von 
Frisch (1950, pp. 76–77)). It is in this context that I use the 
term “honeybee waggle dance.”

When individual bees discover a valuable food source, it 
is often beneficial to recruit nestmates as soon as possible. 
Competition from other foragers, and the brief duration of 
flowering, set important time constraints. A bee that finds 
a good flower patch will often try to direct available work-
ers to that location. Indicating direction and distance on the 
vertical inner surface of a pitch-black hive is no mean feat. 
Bees nonetheless succeed by performing repeated patterns 
of figure-eight movement whose detectable features—ori-
entation and duration—correspond to the direction and 
distance of the food source (see Fig. 1). This is the wag-
gle dance, so called because the bee’s body vibrates during 
the straight portion of the figure-eight run with a frequency 

1 Stegmann’s edited volume (Stegmann 2013a) characterizes the 
debate as between information-based and influence-based definitions. 
However, as pointed out by several entries in that volume, informa-
tion and influence do not form a strict dichotomy. Here I am primarily concerned with establishing grounds for the attribution of informa-

tion, so I make little mention of influence-based definitions.

Footnote 1 (continued)
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corresponding to the quality of food discovered. Interested 
recruits physically follow the dancer to familiarize them-
selves with the direction and distance indicated, before fly-
ing off to locate the relevant food patch.

Informally, the dance is a signal about the location of 
food. Behavioral ecologists advert to the correspondence 
between dance and food when explaining foraging behav-
ior of hive recruits (von Frisch 1950, p. 78; Biesmeijer and 
Seeley 2005, p. 133; Riley et al. 2005, p. 205; Beekman 
et al. 2015, p. 1). Indeed, much work on honeybees after von 
Frisch was geared towards demonstrating that these explana-
tions were correct (Gould 1975). That recruits are capable of 
finding food at a rate better than chance having followed the 

relevant dance is an established fact.2 The present work uses 
the foraging waggle dance as a case study in the application 
of information theory to animal communication. We shall 
assume that recruits who follow the dance find the indicated 
food source at better than chance and that the dance evolved 
for this reason.

The next subsection surveys the earliest attempt to meas-
ure information transmission in the waggle dance. I then 
describe and respond to recent objections.

Haldane and Spurway (1954)

In this section I build a positive case for the relevance of 
informational measurements to selective explanation. The 
claim is illustrated with a case study of the honeybee waggle 
dance, whose informational properties were first measured 
by Haldane and Spurway (1954). I will now describe the 
aims, methods, and conclusions of that study.

Haldane and Spurway wanted to demonstrate the pos-
sibility of deriving informational properties from statistical 
data. They used honeybee communication as an example 
because von Frisch had already published the relevant statis-
tics (von Frisch 1948, 1950, 1952). By 1954, mathematical 
communication theory (MCT) offered a new perspective on 
this data from an engineering viewpoint. At the heart of the 
motivation for the study was the possibility of comparison 
with other animals. It was hoped that the way information 
is measured, and the generality of the units of information, 
might allow for the magnitude of information transmission 
to be compared between communication systems. Indeed, 
soon after the study was published Wilson (1962) obtained 
similar statistical and informational data for fire ants, explic-
itly comparing his results with those of the earlier work. 
Whether or not this comparison was valid is discussed below 
in the section “Information, Costs and Benefits.”

Although contemporary work on biological information 
drawing on MCT typically begins by citing Shannon (1948a, 
b) or Shannon and Weaver (1949), Haldane and Spurway 
took their leave from Norbert Wiener’s Cybernetics (Wiener 
1948). Wiener’s approach emphasizes intra-system control 
over inter-system communication. Since a honeybee colony 
may fruitfully be construed as a more or less unified entity 
with unified goals, it is appropriate to take a cybernetical 
approach to its behavior.3

Fig. 1  How the waggle dance indicates the direction of food. Caption 
from the original image: “A waggle run oriented 45° to the right of 
‘up’ on the vertical comb (A) indicates a food source 45° to the right 
of the direction of the sun outside the hive (B). The abdomen of the 
dancer appears blurred because of the rapid motion from side to side. 
(Figure design: J. Tautz and M. Kleinhenz, Beegroup Würzburg.)” 
(Chittka 2004, p. 898)

2 It is less clear how useful the dance is across different contexts, and 
the purpose for which it originally evolved. Several lines of evidence 
count in favor of nest site selection as the significant factor (Beekman 
et al. 2008; I’Anson Price and Grüter 2015). For simplicity I regret-
fully ignore this possibility.
3 Haldane and Wiener knew each other personally. For some interest-
ing remarks on their relationship, see Dronamraju’s recent biography 
of Haldane (Dronamraju 2017, pp. 259–260).
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Haldane and Spurway (1954, p. 255) use just one equa-
tion to measure information. It is a formula that converts 
two pieces of statistical data (representing receiver behavior) 
into a term for information transmitted by senders. The con-
version works as follows. Suppose a group of receivers are 
about to embark on a foraging run. In the absence of experi-
ence they will tend to spread themselves evenly around the 
foraging domain. Their spatial distribution is represented 
by a uniform probability distribution (Fig. 2A). This is the 
first piece of statistical data, generated by the modeling 
assumption that bees without information forage randomly. 
Note that this is a continuous distribution. The foraging 
domain has not been segmented into discrete “cells,” each 
with some nonzero probability of being arrived at. Rather, 
any given region—of any size—has a nonzero probability 
of being visited. Now consider how receiver bees are dis-
tributed when they react to a dance. Instead of dispersing 
randomly throughout the domain, they all fly in roughly the 
same direction (Fig. 2B). This is the second piece of statisti-
cal data, generated by the observed distribution of recruits 
which is assumed to be Gaussian. This too is a continuous 
function. The “most popular” direction is the direction of 
food, but some receiver bees will be a little inaccurate. The 
conversion equation translates these two distributions into 
a quantity of information, which can be interpreted as the 

information provided by senders about the direction of food. 
It is calculated as follows.

The conversion equation is derived from two formu-
las taken from Shannon (1948b). These formulas give the 
entropy of a Gaussian distribution (Shannon 1948b, p. 630) 
and the information rate of a continuous channel (Shannon 
1948b, p. 637). Haldane and Spurway combine the two into 
a single equation giving the information rate of a continuous 
channel when the source entropy is uniform and the condi-
tional entropy is Gaussian. The most perspicuous form of 
this equation is due to Wilson (1962, Appendix, p. 156) and 
I present it here (the units are bits per signal):

Here, � represents the standard deviation of the Gaussian 
distribution. Informally, it measures the “spread” of receiver 
bees about the food source. Granted that receivers can be 
represented by a Gaussian distribution, � is the only statistic 
required to calculate information rate.4 

(1)Information rate = log2
360◦

�
◦

− log2

√

2�e

A Without signal
Probability

360◦
Direction

B With signal
Probability

360◦
Direction

Fig. 2  How directional information in the waggle dance is meas-
ured. A Without experience, bees are expected to disperse randomly 
(small dots; blue in online version) about the hive (black disc). This 
is represented by a uniform distribution (circle; blue in online ver-
sion) around the hive. The same distribution in Cartesian coordinates 
is also presented. B After receiving a signal, receiver bees are much 

more biased toward the direction indicated by the dance. This situa-
tion is represented as a Gaussian distribution. Information transmis-
sion is measured by subtracting the entropy of B from the entropy of 
A (see Eq. 1 for details). Although individual entropies are quantified 
relative to the coordinate system (here 360 degrees per circle), infor-
mation rate is not relativized in this way (Shannon 1948b, p. 631).

4 The appropriate measure for the Gaussian distribution is presented 
in Shannon and Weaver (1949, p. 89). Haldane and Spurway cite 
Wiener (1948, p. 62) who provides a general formulation of informa-
tion in a continuous distribution and does not appear to discuss the 
Gaussian case explicitly. For a derivation (and explanation) of the 
equation used by Haldane and Spurway (1954, p. 255) see Wilson 
(1962, Appendix).
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An equivalent way of conceiving the situation is to take 
the uniform distribution as a “prior” and the Gaussian as a 
“posterior.” Before the dance, receiver bees are maximally 
uncertain about the location of food, hence the prior dis-
tribution is uniform. After the dance, the receiver bees’ 
uncertainty has decreased. The magnitude of the decrease 
in uncertainty is a relation between the Gaussian and uni-
form distributions.5

By the method just described, Haldane and Spurway 
derive a quantity of information about the direction in which 
food can be found. Substituting the standard deviation of 
14.7◦ (1954, p. 251) into Eq. (1), they conclude that each 
recruit receives on average 2.5 bits (1954, p. 278) of infor-
mation about the direction of food. It is worth pointing out 
that this analysis holds regardless of facts about the cogni-
tive powers of individual bees. On the cybernetic interpreta-
tion, information is a measure of how behavioral precision 
contributes to system goals. Cognitive sophistication can be 
included or omitted from models of communication, with-
out bearing on the presence of information in signaling sys-
tems. The same is true of sender-receiver models in general 
(Skyrms 2010, p. 44).

Why is this method justified in the case of honeybees? 
If a colony is an entity with unified evolutionary goals, it is 
plausible to think senders obtain a payoff for receiver suc-
cess. Since receiver success increases when information is 
transmitted, the dance evolves because of the information it 
provides. In other words, when “information” is construed 
in terms of accuracy, information rate is selected for. Nature 
plausibly selects for accuracy under the circumstances bee 
colonies have historically found themselves in. On this 
interpretation, selection has led to increased information 
transmission. This is one route to explaining the increased 
articulation in the waggle dance over phylogenetically earlier 
kinds of dance. If articulation supports greater information 
transmission, and information rate is selected for, then artic-
ulation can be selected for its informational consequences. 
Of course, adaptation is always subject to constraints, and 
the quantity of information transmitted cannot increase 
indefinitely (Preece and Beekman 2014). Nonetheless, it 
is justifiably claimed that the benefits of foraging accuracy 
historically underpinned selection for greater information 
transmission in the honeybee waggle dance.

In sum, Haldane and Spurway established that informa-
tional measures can be derived from statistical data. They 
justified their use of a measure taken from MCT by adopt-
ing a cybernetic perspective on honeybee colonies. To the 
extent that a colony’s communicative goals are unified, this 

approach is justified. Since 1954 more work in a similar 
vein has appeared (Riley et al. 2005; Beekman et al. 2015; 
Schürch and Ratnieks 2015). Regardless of differing results, 
what matters here is whether Haldane and Spurway’s model 
was a good one and whether their interpretation of informa-
tion was valid. I have so far argued that the answer to both 
of these questions is yes. The next section responds to two 
objections.

Initial Objections to Haldane and Spurway

Skepticism of the validity of these results continues (Pfeifer 
2006; Sarkar 2013). Even optimistic scholars, as well as 
those on the fence, cite Pfeifer (2006) as having presented 
technical challenges to the use of information theory in biol-
ogy (Reading 2011, p. 149, fn. 6; Stegmann 2013b, p. 143; 
Wiley 2013, p. 118). I aim to show that although there surely 
will be technical and methodological hurdles, they are not 
the ones presented by these objections.

Objection 1: Arbitrary Coordinate Systems

In this section I show how the bee dance is both iconic and 
continuous and how signals of this kind contain measurable 
information. This undercuts one skeptical argument against 
the use of information theory for animal signals in general, 
and the bee dance in particular, namely that the models we 
employ to quantify signal information are somehow arbi-
trary. Discrete models appear to be arbitrary, but continuous 
models do not suffer from the same defect.

The skeptical argument due to Pfeifer (2006) and repeated 
by Sarkar (2013, §7.3 ) runs as follows. Honeybee signals 
indicate, among other things, the direction of a food source 
relative to the hive. The quantity of information about direc-
tion in a signal depends on how precise the signal is. When 
modeling bee signals, therefore, the amount of information 
we will obtain depends on how finely we carve up “direction 
space.” But we have no a priori guidance as to how finely 
to carve up the space. Different divisions will give different 
measures of information, but none will have priority. Sarkar 
suggests we could test for individual bees’ perceptual acu-
ity, and divide the space into segments of a size roughly 
discriminable by the bees themselves. He claims Haldane 
and Spurway did not do this, and that even if they had, the 
placement of these individual direction-segments would 
have been arbitrary. By shifting them a half-step clockwise, 
we obtain a totally new division of direction space, which 
will transform our statistical data into different informa-
tional measurements. Since no carving of the space is privi-
leged, there can be no privileged conversion of statistical 
data into informational quantities. As a result, information 

5 In fact the von Mises distribution would have been more appro-
priate (Schürch and Ratnieks 2015). The Gaussian is an acceptable 
approximation.
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measurements are to some extent arbitrary, and cannot be 
relevant for selective explanation.

To make the objection clearer, consider one of Pfeifer’s 
models (Pfeifer 2006, p. 325). Suppose there are three types 
of bee, E, F, and G.6 They each need to signal the location 
of food, and each signal indicates a direction around a circle 
centered on the nest. Further, they differ in the probabilities 
of signaling in each direction, as per Fig. 3.

Described this way, each type transmits a certain amount 
of information on average:

– E: 1.971 bits/signal
– F: 1.971 bits/signal
– G: 1.985 bits/signal

We see that G transmits more than E and F on average. 
However, if response behavior is distributed uniformly about 
the segments, we can individuate signals by cardinal points 
instead, as per Fig. 4.

Described this alternative way, the information measure-
ments are:

– E: 2 bits/signal
– F: 1.985 bits/signal
– G: 1.996 bits/signal7

Notice that the order of greater/lesser information trans-
mission has changed. Now E transmits more than G types, 

followed by F types last. The subsequent argument is fairly 
obvious. If signal individuation is down to the modeler’s 
discretion, and information measures are sensitive to indi-
viduation, then information transmission is model-relative.

Though there are many ways for depictions of the world 
to be relativized to the model used to express them, and not 
all render hypotheses inconsequential, the kind of relativity 
implied by this objection is problematic. A selective hypoth-
esis is supposed to pick out a property and state why it per-
sists in the lineage. In this case, the property is the quantity 
of information contained within signals. If that quantity can-
not be said to be greater or lesser except relative to the model 
chosen to represent the signal, we need independent grounds 
on which to choose one model over another. Pfeifer claims 
we have no such grounds since no carving of the space is 
privileged (Pfeifer 2006, p. 325, col. 1): “if different ways of 
carving signals result in different orderings of the measure-
ments, then it is unclear how the measure could be used in 
explaining how information transmission is selected for.” 
As a result, no selective hypothesis adverting to information 
transmission is recommended over any other.

Response to Objection 1

There are two ways to read the objection. I will argue it 
fails in either case. On the first reading, it turns out recarv-
ing the space does not alter the informational measurement. 
The objection fails on mathematical grounds. On the sec-
ond reading, recarving the space alters the measurement as 
required, but some carvings will more accurately match the 
facts than others. Selective hypotheses adverting to infor-
mational measurements are then verifiable, establishing the 
required link between model and reality. The objection fails 
on both readings. Moreover, the dilemma is not accidental. It 
is a reflection of Pfeifer’s assumption that signals are discrete 

Fig. 3  Signal probabilities for 
model EFG 

E

0.2

0.3

0.3

0.2

F

0.2

0.2

0.3

0.3

G

0.2

0.25

0.3

0.25

Fig. 4  Signal probabilities for 
model EFG, alternative descrip-
tion
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6 The original example mentioned ants. Here and below I substitute 
bees without loss of generality. I retain the alphabetical labeling of 
types for ease of comparison with Pfeifer’s article. Space precludes 
discussion of model ABCD.
7 A typo in the published version of Pfeifer (2006, p. 325) errone-
ously cites this value as 1.96 bits/signal.
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and indicate direction symbolically. In fact, signals in this 
system are continuous and indicate direction iconically.

Consider the first reading. The objection rests on statisti-
cal differences between the two carvings. However, the sec-
ond partitioning does not seem to have the entropy assumed 
by the second informational calculation. If the distribution of 
insects across each partition in the first carving is uniform, 
the distributions in the second will not be uniform. To see 
this, consider Fig. 5 (top row). Solid curved lines (blue in 
online version) represent insects observed in each segment 
as a proportion of total insects observed. These densities 
would not change even after the partitions are shifted, so the 
new distributions are nonuniform lines with a step-change 
in the middle of each partition. The information rate derived 
from such stepped distributions is the same as that calculated 
from the original partitioning. As a result, the proposed cal-
culation is incorrect and does not have the consequence that 
information measurements are model-relative.

There is another way to read the objection, however. Sup-
pose the scientists were faced with a choice of partition to 
use while conducting the experiment. They can set up their 
four detectors in either of the two configurations depicted 
by model EFG. Due to restrictions in the precision of the 
detectors, they are forced to assume a uniform distribution 
within each segment in either case (Fig. 5, bottom row). 
Given these conditions, it is true that a scientist who opts for 
the first configuration would derive different informational 
measurements than one who chooses the second. Different 
selective hypotheses result, but one hypothesis will be better. 

One carving entails more accurate modeling assumptions, 
since the regions it describes in fact have a more uniform 
distribution of insects passing through. Alternatively, both 
carvings could be equally wrong. This is importantly dif-
ferent from being arbitrary, since there will be some other 
carving that is better than both. In any event, a more precise 
detection method would capture more fine-grained insect 
movements, giving rise to more accurate informational 
calculations.

The objection fails on both readings, a dilemma that 
brings out a key difference between model EFG and the 
model used by Haldane and Spurway. The latter employed 
a discrete approximation of a continuous model, using 
an equation of continuous rather than discrete entropy. 
Although the statistic they plugged into the equation was 
derived from an experiment using discrete partitions, it is 
a different way of modeling the situation than that typified 
by EFG. Discrete approximations to continuous models 
become more accurate as they become more fine-grained 
(Schürch and Ratnieks 2015, Fig. 1, p. 3). If the insects of 
model EFG were observed again using detectors capable of 
distinguishing 8, 16, or 32 partitions, the resulting informa-
tion measurement would become more precise. It would not 
increase indefinitely, as per Pfeifer’s approach.

To reiterate, Pfeifer introduces a situation in which sig-
nals are discrete and represent directions symbolically. Her 
objection is then that we cannot possibly come to know how 
symbols and directions correspond, and any choice destroys 
the link between model and reality. In contrast, the biologists 
make the reasonable and widely accepted assumption that 
bee signals are continuous and represent directions iconi-
cally. Once a continuous model is employed to represent 
a signaling system, discrete partitions can be overlaid to 
retrieve data. The more fine-grained these partitions, the 
more accurately the data captures the continuous model 
lying underneath.

A different but equally mistaken conclusion might be 
drawn from the equation used to convert statistical into 
informational data. To measure the accuracy of the waggle 
dance, Haldane and Spurway took a circle centered on the 
nest and measured the proportion of that circle covered by 
insects that had received a signal (recall Fig. 2 and Eq. 1). 
A smaller circle proportion covered by food-seeking receiv-
ers means more accurate communication, hence a greater 
amount of information transferred. Pfeifer objects to the 
appearance of the number 360 in Eq. (1):

It is assumed in both cases that there are 360 possible 
messages about direction corresponding to the 360 
degrees surrounding the nests of the ants or bees [but] 
it is not clear why they should be divided into 360 
different possible signals, as opposed to 180, 720, or 
some other number. (Pfeifer 2006, p. 342)

Model EFG (type E): first reading

Model EFG (type E): second reading

Fig. 5  Two ways of understanding objection 1. The first entails the 
same informational results for both carvings. The objection is then 
incorrect on mathematical grounds. The second entails different 
informational results, but different falsifiable assumptions. The objec-
tion fails because the models’ assumptions are verifiable, not arbitrary 
in the manner required for the objection to go through
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It is easy to see the problem if the objection hits its mark. 
The division of circles into 360 equal segments is a human 
convention. If it is used as the basis of an information cal-
culation, any derived quantities must be arbitrary as well. 
Conventional measurements cannot enter into explanations 
that pertain to natural selection, since nature is blind to our 
conventions. Consequently the use of 360 in Eq. (1) is inap-
propriate. Again, citing Pfeifer, Sarkar reiterates the objec-
tion (Sarkar 2013, p. 196).

However, the interpretation of Eq. (1) that underpins this 
argument is incorrect. The number 360 is employed only as a 
convenience for the reader. The equations in which it appears 
are designed to calculate the proportion of the circle covered 
by outgoing insects. Proportion is blind to the units used to 
calculate it since dimensions cancel in the division. Indeed, 
Haldane and Spurway first represent the full angle in radians 
as 2 � before converting it to 360 degrees for expository clar-
ity (Haldane and Spurway 1954, p. 255). Unfortunately they 
use the same symbol, � , in both cases, making it less than 
obvious that the units have changed from radians to degrees. 
Equation (2) and Fig. 6 demonstrate the equivalence of these 
different measures.

 
As a result the use of the number 360 does not indicate 

an assumption of 360 messages. It is true, however, that the 
precision of the calculation increases as the precision of � 
increases. Pfeifer raises a related complaint that the statisti-
cal data available to Haldane and Spurway are given in 15 
degree increments, which is too coarse-grained to provide 
a reliable measure. However, the biologists take this into 
account, and the error margins they give are consistent with 
their estimations. As per Schürch and Ratnieks (2015, p. 3), 
more precise measurements would lead to more accurate 
calculations. In sum, this objection is not sustained.

Overall then, the accusation of arbitrariness toward coor-
dinate systems used to measure the directional component 
of the bee dance cannot be upheld. Continuous models are 
available for use where appropriate. Haldane and Spurway 

(2)Circle proportion =

�degrees

360
=

�radians

2�
=

�turn

�

employed such a model. Though the literature on sender-
receiver models emphasizes discrete signal sets, this is 
not a necessary feature of the framework. Plausibly, many 
signals in nature can be profitably investigated with con-
tinuous models. Discrete models are often best construed as 
approximations to the underlying continuous representation. 
In the next section I deal with a second major objection 
to the use of information theory in the study of biological 
communication.

Objection 2: Precision and Accuracy

In this section I show how quantifying information in signals 
is not just a case of quantifying the precision of receiver 
behavior. One route to skepticism of the utility of informa-
tion theory in biology is based on the claim that behavioral 
precision does not entail accuracy, hence precision alone 
entails nothing about fitness. I show that information meas-
urements, far from being solely a measure of precision, are 
a quantification of accuracy. Accuracy, which in this case 
translates into foraging efficiency, is clearly relevant for 
fitness.

The objection, again due to Pfeifer, runs as follows. The 
biologists used statistical data in their calculations, and the 
statistic they employed is the spatial distribution of sig-
nal receivers. A greater proportion of receivers clustered 
closer to the target entails a greater quantity of information 
transmitted. By measuring the difference between this more 
“focused” distribution, and the otherwise random distribu-
tion of receivers around the circle, the biologists quantify 
information. Pfeifer complains that mere increased precision 
of receiver behavior might not be selectively relevant. Sup-
pose bees clustered closely together in a region that lacked 
food. Their behavior would be focused in a statistical sense, 
yet would not contribute to fitness. Behavior can be highly 
specific yet selectively neutral, or even detrimental. To sup-
port the objection Pfeifer presents model HIJ.

Suppose there are three kinds of bee, H, I, and J, each 
of which can signal to the east and west and do so with 
equal probability. Suppose H types always go east when sig-
naled east and west when signaled west, but I types respond 

Fig. 6  The proportion of a circle covered by receiver insects can be 
calculated using any units, whether degrees, radians, or as a fraction 
of a turn. In Eq. (2), � (Greek letter sigma) represents the angle of the 

shaded segment. Hence the first logarithm in Eq. (1) represents the 
length of an arc as a proportion of the circumference of the circle, 
which is not relative to the conventional measure of 360 degrees
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improperly by going west when signaled east and east when 
signaled west. In addition, J types go east with probability 
0.7 when signaled east, otherwise west, and vice versa. The 
problem highlighted by this model is that H and I types 
transmit the same amount of information, namely 1 bit/sig-
nal, whereas J types transmit much less, around 0.119 bits/
signal. Despite this, we would expect J types to perform 
better than I types because they successfully obtain food 
more often on average. In consequence, it is unclear how 
information transmission can have relevance for fitness.

Response to Objection 2

We can respond to this objection by noting that the increased 
“focus” of the posterior distribution is centered on a target 
that has selective relevance, such as food. Wilson (1962) 
confirms that this assumption is encapsulated by the model. 
The parameter used to measure information, �

d
 , is directly 

relevant for accuracy:

Note that �
d
 refers to dispersion of following work-

ers with reference to the actual target and hence is a 
direct measure of the accuracy (content) of informa-
tion transmission. The honeybee data of von Frisch 
and his co-workers are of this nature. (Wilson 1962, 
Appendix, p. 157, col. 1)

Insofar as receiver bees have a greater probability of finding 
food after having watched a dance, information is transmit-
ted by dancing bees. It is this notion of transmission that 
constitutes grounds for application of the information con-
cept, and related mathematical tools, in studies of biological 
signaling.

What about model HIJ? It seems to show that biologists 
might inadvertently attribute a high rate of information 
transmission to a colony that fails to put its signals to good 
use. As a claim about methodology, this is implausible. If 
it is assumed that signals used by type I are indeed food 
signals, it would be mysterious why receivers behave so 
aberrantly. Where the colony’s goal is finding food, signals 
generally increase the probability of doing so. When they 
do not, they are selected against. I-type signals could hardly 
be regarded as signals about food since the probability of 
finding food is not raised when they are sent.

Like any piece of behavior, a signal cannot be selected 
for if it does not contribute to fitness. By hypothesis I-type 
signals do not contribute to fitness, therefore they cannot 
be selected for. As a result they would not contribute to a 
behavioral ecologist’s selective hypothesis; they would be 
simply anomalous.

To reiterate, the biologists’ models embody a crucial 
assumption: that the target has selective relevance. In this 
section, two mathematical objections have been over-
turned. I now turn to broader considerations about the use 

of informational concepts in animal communication theory, 
paying particular attention to the special nature of the hon-
eybee waggle dance and how the arguments presented here 
are affected by weakening some of the assumptions required 
to model it.

Wider Considerations of the Use 
of Informational Concepts 
and Measurements

As a result of the foregoing interpretation of honeybee sign-
aling, we are in a position to consider several of ORR’s chal-
lenges in a new light. As this article is primarily defensive, 
the alternative influence-based definition is not critically 
assessed, nor do I consider systems in which animals possess 
mental representations that may be used to produce or inter-
pret signals. I deal only with information in the sense Kalk-
man (2017, p. 1127) describes as an “ultimate explanatory 
construct.” The target of explanation is fitness-improving 
behavior, including coordination of two or more agents. In 
proceeding via minimal models of communication, nothing 
need be assumed about cognitive sophistication. To be sure, 
proponents of information in such signals as primate alarm 
calls must face other challenges from ORR. I remain silent 
on those aspects of the debate.

Defining Information and Encoding

The most pressing challenge to the optimist about informa-
tion is the lack of a clear definition of that concept in behav-
ioral ecology. I introduce the challenge before responding 
to it. ORR point out that many authors use the quasi-tech-
nical term in an unconstrained manner (Rendall et al. 2009, 
Table 2; Rendall and Owren 2013, Table 6.1). As a result 
those authors often switch between different concepts mas-
querading under the same label, or gesture at unsubstantiated 
explanations. In particular, authors often invoke “informa-
tion” in a technical sense that quantifies correlations between 
events. This Shannon information cannot be central to defi-
nitions of signaling, however, because it can describe any 
correlated events, biological or otherwise.

This distinction between the measurement of correla-
tions and a richer, semantic notion of information lies at the 
heart of this debate and wider issues surrounding biological 
information. The relevant Stanford Encyclopedia of Philoso-
phy article as of 2018 (Godfrey-Smith and Sterelny 2016) 
organizes its exposition around two distinct approaches: 
“Shannon’s concept of information” and “Teleosemantic and 
other richer concepts.” Sarkar (2013) distinguishes Shannon 
information (he calls it MCT-information) from semantic 
information, and repeats ORR’s contention that theorists 
often conflate the two. The distinction has also been flagged 



173Attribution of Information in Animal Interaction  

1 3

as between “syntactic” and “semantic” information, the for-
mer being agnostic about the meaning of signals or symbols 
whose transmission it quantifies (Morton and Coss 2013, pp. 
211, 229). The consensus is clear: Shannon information has 
no import for semantic information, and theorists do wrong 
to conflate the two. Since invocations of information are 
inconsistent, and nobody has provided a resolute definition, 
it seems better to dispense with the notion.

A similar fate befalls the concept of encoding. Signals are 
sometimes said to carry information in a form that a receiver 
must decode in order to obtain. But it is rarely made explicit 
what is meant by an “encoded message” in a biological set-
ting. By failing to specify what is being invoked, theorists 
draw on a “vague, elastic and insubstantial” concept (Owren 
et al. 2010, p. 758) that cannot do the explanatory work 
required. As with “information,” then, talk of “encoding” 
does more harm than good. Both can be discarded with-
out losing explanatory power. Rendall and Owren (2013, 
pp. 171–172) make an even stronger claim: “Ultimately, 
notions such as information and coding cannot be cashed 
out in terms of standard concepts used in biological and 
evolutionary theory.”

One thing worth mentioning here is that ORR’s wider 
aim, to critique anthropocentrism and linguistic metaphors 
in animal signaling theory, is laudable. Animal communi-
cation should indeed be understood on its own terms, and 
should not be treated as a pale imitation of human natural 
language. It is interesting, however, that ORR consider the 
use of information theory to fall into this anthropomorphic 
paradigm, since several theorists present the story precisely 
the other way round. The “conduit metaphor” that ORR dis-
cuss is a term introduced by Reddy (1979) in part to high-
light the limitations of modeling human communication as 
an MCT channel. Reznikova (2017) introduces information-
theoretic methods in studies of communication between ants, 
in an attempt to get away from language-inspired metaphors 
and methodologies. Harms (2004) promotes formal meth-
ods for capturing meaning without recourse to translation, 
since translating animal signals into human language can 
only mislead us about the nature of meaning. All these 
theorists note the disparity between MCT and human lan-
guage. Below, I continue work in that tradition, arguing that 
information theory is apt for generalization to animal com-
munication theory precisely because it captures something 
far more general than human engineering constructs. It 
should become clear that information theory, rightly inter-
preted, is no more anthropocentric than any other branch of 
mathematics.

Claims about the irrelevance of information measures for 
“semantic information” are deeply mistaken, and are dis-
cussed in the next subsection. I want first to show that both 
information and encoding are clearly defined in the honey-
bee case. As discussed at length above, the measurement 

of transmission rate captures the accuracy of receiver bees, 
hence the efficiency of foraging behavior. Haldane and Spur-
way’s insight was to define an entropy over the space of rele-
vant behavioral outcomes such that when entropy is reduced 
by a communicative act, the measure of information rate is 
simply a measure of successful functional performance. This 
is an easy measurement to perform in the honeybee case 
because foraging efficiency is linked to spatial accuracy, and 
spatial accuracy is comparatively easy to ascertain.

So information can be defined, at least in this case, in 
terms of functional performance, rendering it both tracta-
ble and relevant for selection. Consider now the concept of 
encoding. After a period of controversy in the middle of the 
20th century, it became widely accepted that the different 
components of the bee dance correspond to different spatial 
relations between the hive and the indicated food source. 
These aspects of the dance vary with those spatial relations 
in a principled way. If they did not, receivers would be una-
ble to reliably exploit the relevant food source. Although 
there are several other factors affecting transmission rate, 
the correspondence between spatial relations and dance fea-
tures—what I am here calling the code—clearly affects it 
too. Consider the round dance, an alternative to the waggle 
dance used when food sources are very close. This dance 
has no directional component, meaning that on average its 
transmission rate would be lower than the waggle dance. 
Greater articulation affords greater transmission rate, which 
presumably contributes to the explanation why the waggle 
dance is articulated into different components. In general, 
then, a code is a set of correspondences between signal and 
world, designed so that receiver behavior covaries aptly with 
the state of the world.8

In a section below I discuss prospects for extending these 
definitions to cases of animal signaling not typically charac-
terized by common interest. Having demonstrated these defi-
nitions, I must now clear up a deep misconception regarding 
the use of information theory in biology.

Information and Meaning

One of the conceptual advances that heralded the develop-
ment of communication theory was the recognition that 
meaning could be abstracted away from symbol sequences. 
Common interpretation of a symbol sequence means that all 
that need be passed in order to effectively pass meaning is 

8 This definition has pedigree from at least two sources. First, Mil-
likan’s definition of mapping rules between signal and world sus-
tains the requirement of codesign and takes as a canonical example 
the articulation of the waggle dance (Millikan 1984, p. 107). Second, 
Skyrms’s account of the evolutionary emergence of conventional 
meaning outlines correspondences, resulting from coadaptation, 
between signals and the behaviors they cause (Skyrms 2010, §§3–5).
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the sequence itself. Subsequently, measures of information 
were defined in terms of the passability of the sequence, 
prohibiting mention of any meaning it might be associated 
with. This hallmark of the basic model of MCT is expressed 
by Weaver’s oft-quoted warning:

The word information, in this theory, is used in a spe-
cial sense that must not be confused with its ordinary 
usage. In particular, information must not be confused 
with meaning. In fact, two messages, one of which is 
heavily loaded with meaning and the other of which 
is pure nonsense, can be exactly equivalent, from the 
present viewpoint, as regards information. (Shannon 
and Weaver 1949, p. 8; emphasis in original)

Through Bar-Hillel and Carnap (1953), Dretske (1983), 
Dennett (1983), and Krebs and Dawkins (1984),9 that warn-
ing found its way into the animal signaling literature. ORR 
cite it unmodified (Rendall et al. 2009, p. 240, col. 2; Owren 
et al. 2010, p. 761), and Sarkar (2013, p. 193) reaffirms the 
sentiment. As mentioned above, the canonical view in the 
philosophy of biology is that mathematical concepts from 
information theory must be different from whatever is meant 
by the “meaning of” or “semantic information carried by” 
a biological signal.10

The central MCT model abstracts meaning away as 
described above. But what was not recognized until much 
more recently is that it smuggles in a different kind of mean-
ing. Codesigned signalers and receivers passing messages 
across a medium are apt for a straightforward teleoseman-
tic analysis. The encoded message of the MCT model fits 
this description perfectly. Regardless of the meaning of 
the original symbol string, encoded messages possess the 
kind of meaning Godfrey-Smith (2013) calls “subpersonal 
content.”11 Encoded messages stand for the source message 
from which they were derived. The code is shared between 

transmitter and receiver as a consequence of codesign. Elec-
trical pulses in telegraph wires are paradigmatic examples 
of signals with subpersonal content. It is crucial to note that 
this holds regardless of whether the symbol strings they 
encode have any further meaning. Simply being encoded and 
decoded by a codesigned signaler-receiver pair is enough 
to count as a contentful signal. In the special case of MCT, 
what signals signify is another string of symbols.

The consequences of this perspective will be crucial for 
understanding the relationship between MCT and biologi-
cal signals, including animal communication. First, notice 
that what is quantified by transmission rate is the efficiency 
of joint function. The only goal of the central MCT model 
is to reconstruct a source message at the target. This is true 
whether the signal is a crucial battle order or a nonsense 
string compiled by an infant. Its success in this endeavor is 
what is quantified by transmission rate.12 Maximum possible 
success is quantified by channel capacity. What is almost 
universally ignored is that message reconstruction is not 
the only joint goal whose efficiency can be quantified in 
this way. Signals need not stand for and produce strings of 
symbols, as they inevitably do in MCT.13 They can stand for 
states of affairs and produce behavior directly, without fur-
ther symbolic intermediaries. The honeybee waggle dance 
is a canonical example.

The perspective of subpersonal content affords both a 
naturalistic approach to meaning as well as insight into the 
special nature of the MCT model. There is one further con-
sequence worth mentioning that highlights an important but 
tacit assumption lying behind at least one of ORR’s objec-
tions to information-talk (see below). In many discussions 
of this and related topics, “information” is taken to imply an 
exclusively indicative correspondence between signal and 
world. This can be seen whenever it is cashed out in terms of 
the probability of an outcome, correlations between events, a 
relation of standing-for, or what a receiver could infer from 
the signal. What has come out of the literature on subper-
sonal content is another kind of correspondence between a 
signal and the world. Signals often bear an instructive ele-
ment, being supposed to bring about some state of affairs. 
This suggests an interpretation in terms of the favorability of 
an outcome, or of what a signaler can control. Signals may 
be more or less instructive or informative; in the simplest 
systems characterized by full common interest they possess 
both aspects to the same extent.14 To continue our earlier 

9 The closest I can find to the traditional irrelevance claim is on p. 
395: “Measurements of Shannon information do not necessarily 
reveal anything about semantic information, although they often do.”
10 There is at least one prominent school of dissent to this orthodoxy, 
in the shape of the sender-receiver paradigm headed by Brian Skyrms 
(2010). Though Skyrms accepts that the total quantity of information 
in any given signal is silent on its content, he proposes a definition 
of information content that makes use of informational measurements 
(Skyrms 2010, §3). Importantly, it does not cut between signals and 
cues. Like ORR’s definition of Shannon information, it is defined 
in terms of probabilities, not function. In what follows I leave the 
Skyrms account to one side. Though it is useful and innovative, there 
is a much more direct way to demonstrate the relationship between 
information in MCT and meaning in biological signals.
11 “Subpersonal” is applied to brain states that are not assumed to 
play a role in conscious thought. I use it here as a modifier to “con-
tent” that makes no assumptions further than codesign of signalers 
and receivers. It is therefore applicable to subcognitive and noncogni-
tive systems in the manner of Shea (2007) and Millikan (2013).

12 Measured in bits per symbol, not per second.
13 Oliver Lean has made the same point (Lean 2016, pp. 239–240).
14 Signals with this dual character were labeled “neutral” by Lewis 
(1969),  “pushmi-pullyu” by Millikan (1995) and “primitive” by 
Harms (2004). The latter is the preferred term. Incidentally, it might 
be thought that the instruction/information distinction is just another 
way of describing the influence/information distinction. Unfortu-
nately, the latter is far more ambiguous.
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example, an encoded message in the central MCT model 
equally informs the receiver about the source message and 
instructs it which target message to produce. Because the 
literature on information theory places so much emphasis on 
inference, this instructive aspect of signals is often missed.

In sum, the traditional distinction between semantic 
information and formal measures of transmission in com-
munication channels is misguided. By neglecting the special 
nature of the MCT model, scholars have improperly adopted 
Weaver’s irrelevance claim in domains where it does not 
belong. I now turn to a more pressing objection to the use 
of information theory in behavioral ecology.

Information, Costs and Benefits

Sarkar (2013, pp. 200–201) offers a further challenge to this 
construal of information. Although animals’ evolutionary 
interests can be furthered by certain behavioral strategies, 
and although these strategies sometimes require coordina-
tion with other animals, describing and explaining optimal 
behavior never requires information-theoretic formalism. 
Speaking of the honeybee waggle dance, he claims “we can 
quantify the loss of optimality (e.g., as a function of the 
departure from optimality of resources gathered relative to 
foraging effort) with no recourse to ‘information’ ” (Sarkar 
2013, p. 201).

On the surface this claim seems plausible. Recall Haldane 
and Spurway took one piece of statistical data, the stand-
ard deviation of the Gaussian distribution, and converted 
it into a measurement of transmission rate. It is not clear 
what that latter calculation adds to an evolutionary analysis, 
since describing and explaining optimality seem to require 
only tallying costs, benefits, and probabilities. As it stands, 
however, Sarkar’s claim is unsubstantiated. As Sarkar rightly 
notes, many previous attempts to quantify aspects of animal 
signaling systems measure only the entropy of signaling rep-
ertoires, if they measure anything at all (Sarkar 2013, §4). 
The best chance of extending the concepts of MCT to animal 
signaling theory might be to explain the form of a signal by 
reference to the signalers’ need to coordinate. As well as 
correspondences between signal and world, properties such 
as redundancy and noise contribute to this analysis. A signal 
is a piece of behavior, and like behavior more generally it 
can be optimized. The mathematics describing the optimal 
form of a signal, where signaler and receiver are codesigned, 
is communication theory.15

In their more tempered approach to redefining animal 
communication, Krebs and Dawkins (1984, p. 396) suggest 
information theory might be best suited for an analysis of 
signaling economics rather than measuring bit rate. Striking 
a balance between energy expended on signaling and ensur-
ing sufficient coordination falls neatly into the optimization 
paradigm already well deployed for individual behaviors. It 
does not seem implausible that this can be extended to joint 
behaviors, nor that some appropriate generalization of com-
munication theory can play a role in the mathematization of 
this extension.

On reflection, at least part of the reason why it is diffi-
cult to draw insight from Haldane and Spurway’s measure 
is that it is difficult or impossible to measure costs and ben-
efits, hence difficult to estimate the parameters of “waggle 
dance economics.” The second and third sections, above, are 
dedicated to establishing that Haldane and Spurway meas-
ured something real—the transmission rate of the waggle 
dance of von Frisch’s bees—and that their results were not 
arbitrary, contrary to recent objections. To go beyond this, 
we would need to add hypotheses about the selective envi-
ronment of the honeybee and the context in which signals 
were useful (Preece and Beekman 2014). We would need to 
target specific hypotheses about the process by which the 
primordial cue became the contemporary signal. This would 
likely involve comparative work on dialects between differ-
ent species and subspecies (Beekman et al. 2015). None of 
this threatens the literal truth of the information rate meas-
ure, though it may make it difficult to integrate it with other 
empirical work. In particular, I concur with Sarkar that we 
have reason to be agnostic about the significance of Wilson’s 
comparison between the signaling rates of honeybees and 
fire ants (Wilson 1962). I am skeptical that this comparison 
could be meaningful without significant assumptions about 
the foraging ecology and evolutionary history of both bees 
and ants. Comparing transmission rates may be no more 
valid than comparing costs and benefits between very differ-
ent species. For closely related species this might be a useful 
tactic, but in most cases, such comparisons are meaningless.

Extending the Method to Other Cases

Several reasons counted in favor of using the bee dance as 
a case study. Through decades of research there is plenty of 
data available on bee dances and their effect on compatriot 
bees. Research continues, and any empirical hypotheses 
produced by the theoretical work advocated here could be 
tested on several subspecies. In addition, since bee sociality 
is relatively recent and quite diverse (Danforth 2007), links 
between communication and cooperation could be investi-
gated in depth using the bee family. With regard to honey-
bees, strong eusociality entails a negligible threat of free 

15 The distinction between code-as-correspondence and code-as-
redundancy mirrors a well-known duality in communication theory 
between data compression (“source coding”) and data transmission 
(“channel coding”). Speculatively, the selective pressures on animal 
communication may be skewed far more towards solving the latter 
problem. Hailman’s book (Hailman 2008) and Wiley’s essays (Wiley 
1983, 2013) are examples.
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riding or defection. It is reasonable to assume signaling is 
fully cooperative, avoiding complex problems of cross-pur-
pose and deception. But the question must be faced of what 
becomes of this methodology in cases where few or none of 
these assumptions hold. In this section I consider what we 
have learned so far in the light of more pressing objections.

Explanations of Signaling Behavior Must Not Ignore 
Physiological Constraints

As a consequence of the abstraction required for informa-
tional description, the question of behavioral and develop-
mental constraints has often been ignored. Animals do not 
have great freedom of action, and natural selection does not 
have free rein in shaping their behavior. That many pur-
ported instances of signaling can be shown to be distinctly 
manipulative is a consequence of this fact (Rendall et al. 
2009, p. 237; Owren et al. 2010, pp. 766–767). Consider 
two populations of signalers and receivers without perfectly 
aligned interests, such as males and females of a single spe-
cies. Suppose, as a general rule, overt behavior can adapt 
faster than the cognitive architecture underlying perception. 
Then receivers will often lag behind in the perceptual arms 
race. Signalers will be quick, on an evolutionary scale, to 
exploit perceptual biases while receivers will be slow to 
rectify them. Receiver responses are then determined by 
trade-offs between the need to respond to relevant perceptual 
stimuli without being duped too harshly.16

This story of trade-offs goes beyond signals that are 
“about” something, such as male quality, and includes 
behaviors that cannot be evaluated in terms of honesty. ORR 
point out that many examples of what we typically think of 
as signals are not (or only degenerately) contentful, because 
their function is tied specifically to receiver affect or atten-
tion. For example, males of some fish species display colora-
tion similar to that of their female receivers’ prey, the point 
being to catch a female’s attention (Owren et al. 2010, p. 
767). Importantly, being better at attention-grabbing need 
not correlate with quality. The reason for this male adapta-
tion is not a corresponding female adaptation; it is a prior 
female adaptation for an entirely different function.

There seem to be three intertwined issues here. First, 
traits and behaviors designed as attention-grabbing appear 
not to be contentful. Second, physiological constraints play 
a larger role in shaping the form of the signal than is usually 
afforded by information optimists. Finally, male coloration 
is not a consequence of coadaptation. I deal with the third 

problem in the next subsection, and will speak now to the 
problems of content and constraint.

In the example, fish coloration is not contentful, because 
it does not correlate with anything. Note, however, that the 
assumption lying behind this objection is that informational 
language entails that signals indicate a state of the world. 
As argued above, signals can also contain instructions how 
to act. This could include an instruction to “pay attention,” 
opening the channel for further signaling. Of course, this 
still requires coadaptation, and by assumption the fish in the 
example do not meet this condition. I deal with this wider 
problem in the next subsection, but the point to take away 
here is that coadapted instructive signals need not have the 
familiar indicative content usually assumed by paradigms 
like costly signaling theory.

Consider now physiological constraints. The informa-
tional approach seems to assume the form of a signal should 
be somewhat divorced from its content, so that it can be 
freely optimized for reliable transmission. But signaling 
behaviors whose form is primarily attributable to physi-
ological and developmental constraints are not apt for this 
explanation. It looks like we need an evolutionary com-
munication theory, one that considers optimal joint behav-
ior from the perspective of restricted design capabilities. 
Models of communication from an evolutionary perspective 
would afford much less freedom of choice of encoding. In 
particular, the code—the form of the signal—that develops 
through coevolution will be simultaneously constrained by 
competing adaptive needs of both the signaler and receiver. 
Crucially, it could still be the case that coadaptation plays 
a role in explaining signal form, even though several dif-
ferent kinds of constraint play a role too. In the case of the 
waggle dance, certain physiological constraints have been 
proposed to explain a systematic error in dance performance 
(Preece and Beekman 2014). This is the kind of hypothesis 
that could be integrated with a formal approach to signaling 
theory, provided that other concerns detailed in this article 
are addressed.

ORR have clearly presented important considerations for 
evolutionary perspectives on communication. All behavior 
is subject to physiological and developmental constraints. 
Natural selection does not give rise to perfect forms. Evolu-
tionary models tend to make assumptions trading realism for 
tractability. We must at least find some way of incorporating 
proximate constraints into these investigations.

Explanations of Signaling Behavior Must Not Ignore 
Divergent Interests

Continuing the example from the previous section, there 
were three conditions that the fish signals failed to meet: 
being contentful, being designed with few or no constraints, 
and being coadapted. I agree we must accommodate a 

16 Though see Bergstrom and Lachmann (2003) for conditions under 
which the slower-evolving organism enjoys the benefit, a phenome-
non they call the Red King effect.
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broadened perspective on the first two conditions, but see no 
reason why a mathematical toolkit provided by a generalized 
communication theory should not play a part. Now consider 
how the informational approach should deal with “signals” 
that are not the result of coadaptation.

One option here is to reject that those traits are signals. 
They seem instead to be the logical converse of cues: cor-
related behavior that occurs for the signaler’s benefit rather 
than the receiver’s. The traditional distinction becomes a 
tripartite carving between cues, signals, and manipulations. 
ORR include the latter two categories in their redefinition 
of signaling. I want to highlight that it is at least possible to 
separate them, though I accept that the attractive symmetry 
of the tripartite distinction is unlikely to be representative 
of our asymmetric world.

Just as with cues, manipulations blend into signals when 
previously unidirectional influence becomes coadaptive. 
These three categories are rough coverings of many pos-
sibilities. Evolutionary game theory is explicitly designed 
to study these situations. In particular, work inspired by 
Skyrms’s sender-receiver framework has explored the limits 
of communication in noncooperative settings (Wagner 2012, 
2015; Martínez and Godfrey-Smith 2016), as well as differ-
ent rates of evolution (Brusse and Bruner 2017). Further, 
making this distinction will likely help ORR achieve at least 
one of their goals. They aim to stop theorists searching for 
the wrong explanations of signaling behavior. By adopting 
a third category, they can vividly point out that the majority 
of cases are closer to manipulations than coadapted signals. 
This allows us to distinguish cooperative situations, typified 
by the social insects, from those with multiple conflicting 
evolutionary forces.

All these problems were part of the motivation of Dawk-
ins and Krebs’s original suggested redefinition of signaling:

To summarize the point of view we are adopting: as 
an inevitable byproduct of the fact that animals are 
selected to respond to their environment in ways that 
are on average beneficial to themselves, other animals 
can be selected to subvert this responsiveness for their 
own benefit. This is communication. (Dawkins and 
Krebs 1978, p. 285)

The authors explicitly conflate manipulations and coadapted 
signals. By contrast, the informational approach highlights 
an important difference between them. Just as parasites 
must walk a fine line between exploiting and destroying 
their hosts, so signalers must find a balance between reli-
ably manipulating receivers and driving them out of exist-
ence. Basic models proceed on the assumption that signal-
ing can only exist when some mechanism helps maintain 
equilibrium, preventing one or both parties going extinct. 
One obvious example of such a mechanism is when the same 
behavior brings benefit to both signaler and receiver. In these 

cases there is an element of common interest, hence there 
will be some level of coadaptation. The signal is then partly 
amenable to analysis in terms of information and encoding.

Above, we agreed theoretical and modeling work should 
continue to expand its horizons regarding manipulation and 
constraint. Now we can better see the motivation behind 
costly signaling theory. One party in an interaction charac-
terized by partial common interest may be at risk of extinc-
tion, but which one (and why) will be an empirical ques-
tion in each case. The mechanisms evolution has thrown up 
that manage to prevent extinction, thus prolonging signal-
ing behavior, may be many and varied. Part of the work of 
theory building is to find a taxonomy of such mechanisms 
and outline their symptoms, which can then act as diagnos-
tics for field workers to employ (see, for example, Hurd and 
Enquist (2005)). Dawkins and Krebs promote the view, later 
picked up by ORR, that in the vast majority of cases we will 
find general-purpose receiver perceptual mechanisms being 
exploited by special-purpose signaling behavior. So be it: 
theoretical work will uncover a wider class of forces than 
those manifested in nature.

All of this is apt—none of it threatens our account of 
information. Evolutionary game theory is designed to 
explore interactions of divergent interests, and it shades into 
communication theory when the interests are common and 
there are fewer physiological constraints. Molecular biol-
ogy is working in this direction (Nakano et al. 2013; Igle-
sias 2016), sharing with social insect studies the freedom to 
ignore divergent interests. But weakening the assumption of 
common interest does not mean we cannot use mathemat-
ics to describe it. It means that the mathematics gets more 
general and its interpretation perhaps more obscure. It also 
means there will be mechanisms other than “honesty” main-
taining signaling interactions, and that we should not neces-
sarily look for static equilibrium behavior, but ongoing arms 
races. Sarkar believes that none of this mathematics will 
have anything to do with information theory. Throughout 
this article, I have tried to show that is an overly narrow 
conception of the links between communication theory and 
game theory.

Conclusion

In this article I have focused on the honeybee waggle dance, 
demonstrating how directional information in the dance is 
measured. The quantity of information derived is a measure 
of the accuracy of receiver bees. Increased accuracy entails 
increased efficiency of finding food over a blind search strat-
egy. Clearly these considerations have relevance for the fit-
ness of foragers, and the colony as a whole. The objection 
that information measurements are arbitrary, or have no rel-
evance for fitness, cannot be sustained.
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Several obstacles stand in the way of attempts to gener-
alize this approach to other cases of animal signaling. For 
one thing, signal form is not always explicable by reference 
to coadaptation. The definition of encoding advocated here 
will not be available. Further, it is still unclear how to unify 
informational measurements with fitness cost. It seems likely 
modeling work will continue even while it remains difficult 
to test with empirical examples.

However, genuine concerns should be distinguished from 
those raised due to misunderstandings of communication 
theory. Claims about the undefinability of information, or its 
irrelevance for semantic meaning, or the arbitrariness of its 
measurement have been criticized here. In particular, claims 
about the irrelevance of communication theory for semantic 
information are typically confused. The central model of 
MCT employs symbols that stand for symbols, which is why 
the meaning of one of those sets of symbols is irrelevant 
for quantification. But it is the function of the other set, the 
meta-symbols, that is quantified by transmission rate, and 
whose design is optimized for better performance. Future 
work will seek to characterize far more vividly the relation-
ship between evolutionary game theory and an empirically 
informed evolutionary communication theory.
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