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Quantifying information in structural
representations

(Cuanti�cación de información en representaciones
estructurales)

Stephen FrancisM���*

Max Planck Institute

A�������: The goal of this paper is to show that the information carried by
a structural representation can be decomposed into the information carried by
its component parts. In particular, the relations between the components of a
structural representation carry quanti�able information about the relations be-
tween components of their signi�eds. It follows that the information carried by
cognitive structural representations, including cognitive maps, can in principle
be quanti�ed and decomposed. This is perhaps surprising given that the for-
mal tools of communication theory have typically only been applied to simpler
representation-like states without signi�cant structure, such as detectors or in-
dicators. In the �nal section I consider using computational complexity theory
to capture the processing advantages a�orded by structural representation.
K�������: representation, structural representation, information theory,
mutual information, cognitive science, computational complexity theory.
R������: El objetivo de este artı́culo es demostrar que la información contenida
en una representación estructural puede descomponerse en la información con-
tenida en sus partes componentes. En particular, las relaciones entre los compo-
nentes de una representación estructural contienen información cuanti�cable so-
bre las relaciones entre los componentes de sus signi�cados. De ello se deduce que
la información contenida en las representaciones estructurales cognitivas, inclu-
idos los mapas cognitivos, puede en principio cuanti�carse y descomponerse. Esto
es quizás sorprendente dado que las herramientas formales de la teorı́a de la co-
municación generalmente solo se han aplicado a estados más simples similares a
representaciones sin estructura signi�cativa, como detectores o indicadores. En la
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sección �nal, considero el uso de la teorı́a de la complejidad computacional para
capturar las ventajas de procesamiento que ofrece la representación estructural.
P������� �����: representación, representación estructural, teorı́a de la infor-
mación, información mutua, ciencia cognitiva, teorı́a de la complejidad com-
putacional.

S���� �������: I demonstrate how to quantify the informational content
of structural representations. In particular, I show that the relations borne be-
tween components of a structural representation carry quanti�able informa-
tion about the relations borne between components of the representation’s sig-
ni�ed. The use of information theory to capture aspects of cognitive processing
is therefore broader than is typically assumed.
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�. Introduction

The goal of this paper is to show that the information carried by a structural representa-
tion can be decomposed into the information carried by its component parts. In particular,
the relations between the components of a structural representation carry quanti�able in-
formation about the relations between components of their signi�eds. It follows that the
information carried by cognitive structural representations, including cognitive maps, can
in principle be quanti�ed and decomposed. This is perhaps surprising given that the formal
tools of communication theory have typically only been applied to simpler representation-
like states without signi�cant structure, such as detectors or indicators.

Towards the end of the paper I discuss a puzzle raised by the above argument. If struc-
tural representations carry information just as unstructured representations do, then thepur-
ported bene�ts of structural representation cannot be explained on the basis of information-
carrying alone. I raise the question of what does explain the bene�ts of structural represen-
tation, canvassing intuitive arguments given informally by philosophers of cognitive science.
I then ask whether formal results from computational complexity theory can support these
informal arguments, concluding that they cannot yet be said to do so. If we want to draw on
formal work to support informal theorising about representation (a methodological stance
I admit might not be shared by all), we have to apply computational complexity theory in a
more subtle way than has so far been attempted in cognitive science.

�.� Background: indicator states and structural representations

I hope to contribute to our understanding of a distinction, common in the philosophy of
cognitive science, between indicator states and structural representations. Indicator states are
simple signals, without signi�cant structure, that are typically taken to co-occur with their
signi�eds. Examples include sensory registration (Burge, ����, p. ���) and signals produced
by receptors (Ramsey, ����, ch. �). Structural representations are more complex cognitive
states, typically detached and persistent over time, that bear a structure-preserving resem-
blance relation to their signi�eds. The canonical example is a cognitive map (Shea, ����,
§�.�). Indicator states are often discussed in terms of informational measures like mutual in-
formation, while discussions of structural representation typically omit these terms entirely.
If my argument holds water, we would have good grounds for thinking informational mea-
sures apply to structural representations too, not just indicator states.

�.� Motivation: the explanatory role of informational measures

Philosophers of mind and cognitive science have long considered the relationship between
informational measures and semantic content (Dretske, ����; Gallistel, ����; Shea, ����).
Some have tried to characterise the explanatory role of mutual information in a way that
cashes out informal philosophical theorising about the content of signs. Their hope is that
the established explanatory role of mutual information can shed light on a problem about
the explanatory role of semantic content. That problem is as follows: behaviour triggered
by a sign can only be sensitive to the properties of the sign vehicle, not any properties of the
signi�ed. If content is supposed to be something over and above the vehicular properties
of the sign, it seems as though it cannot play a role in the explanation of behaviour. One
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prominent resolution to this problem is to appeal to content to explain success, then to ex-
plain behaviour derivatively (Shea, ����, §�.�). And for those who wish to tie philosophical
theorising to formal approaches in science, the explanatory role of mutual information can
help make this link. Mutual information tells us how an agent can condition her behaviour
on a sign and act optimally across a range of situations. The information in a sign explains
behaviour because it explains why the agent has learned that conditionalisation in the �rst
place. In terms famously introduced by Dretske (����, §�), the information in a sign is a
structuring cause that explains why this particular sign vehicle is a triggering cause for this
particular behaviour.�

Since the role ofmutual information in a formal context is similar to the role of semantic
content in an informal context, it is tempting to try and link the two. And although there is
no consensus on how this link should be forged, demonstrating the applicability of informa-
tional measures to structural representations widens the scope of any theory that connects
such measures to semantic content. Gallistel (����) points out that the conceptual frame-
work provided by applying information theory to problems of communication and compu-
tation is broader than most philosophers admit. This paper lends support to his point by
demonstrating that the applicability of mutual information and related measures is wider
than has often been appreciated.

�.� Structure of the paper

Section � describes the standardway of applying information-theoreticmeasures to unstruc-
tured signs. Section � suggests a way to apply those measures to features of structured signs,
particularly to the relations between sign components. Section � discusses the possibility of
using computational complexity theory to understand the bene�ts of structural representa-
tion. Section � concludes.

�. Information as correlation

�.� Background

The use of informational measures to quantify correlations started with the introduction of
mutual information.� Mutual information (originally called rate of transmission) was in-
troduced by Shannon (����, p. ���) in the foundational text of communication theory. It

�An anonymous reviewer highlighted recent evidence, presented by Favela andMachery (����), that neurosci-
entists and psychologists don’t attribute representational status on the basis of function. This result is concerning
for philosophers who want to de�ne cognitive representations in terms of function or who want to characterise the
explanatory role of representation in terms of successful behaviour. I’m following the mainstream view and can’t
engage fully with those survey results. I’ll just make two short points in defence of my approach: �rst, Richmond
(����) argues that Favela &Machery’s conclusions are unwarranted on the basis of their study, so we shouldn’t be
quick to jettison a functional account of representation; second, functional accounts like that given by Shea (����)
are based on a careful analysis of the explanatory role of representation in actual cognitive science case studies, which
arguably provides a more accurate picture of what the concept of representation is doing in the discipline than does
a survey of its practitioners.

�Fisher information was de�ned earlier, but is not nowadays mentioned in philosophical discussions of correla-
tion and semantic content. It’s questionable whether the relationship Fisher information quanti�es can reasonably
be called correlation (it’s a relationship between a random variable and a parameter of a statisticalmodel, rather than
between two random variables), so I’ve ignored it in this paper.

�



was used to quantify howmuch could be learned about a signal transmitted through a chan-
nel by observing the signal received. Noise in the channel can corrupt a signal, leading the
received signal to di�er from the signal transmitted. Since noise is modelled as a probabilistic
change to the signal governed by known statistical parameters, the received signal provides
probabilistic evidence about the transmitted signal. Quantifying the amount of probabilis-
tic evidence was useful for the goals of communication theorists, and mutual information
turned out to be a particularly appropriate measure.

It was soon recognised that mutual information applies beyond the context of signals
transmitted through channels. It is a general measure of how much can be learned about
an unobserved process from a correlated observed process. Its mathematical form, which
we will introduce in a moment, lends itself to a wide variety of applications. Sciences in
which mutual information is nowadays used to quantify correlations include behavioural
ecology (Haldane & Spurway, ����), cosmology (Pandey & Sarkar, ����), linguistics (Hun-
ston, ����), molecular biology (Mehta et al., ����), and neuroscience (Rathkopf, ����). Its
generality can be illustrated with an example.

�.� Example �: coin and light

Suppose a fair coin is tossed and lands heads or tails. At the same time there is a light which
can be green or red. Suppose that when the coin lands heads, the light always shows green,
and when the coin lands tails, the light always shows red. Intuitively one can learn which
way the coin landed by observing the colour of the light. There is a very strong correlation
because the two sets of states perfectly correspond to each other.

How can we quantify this correlation? Although there are various statistical techniques
to measure correlations, many of them require numeric data. For example, measuring the
covariance or Pearson correlation coe�cient between the coin and the light would require
assigning numeric values like � and � to the di�erent coin faces and light colours. While
this might be possible and interpretable when there are just two states, it’s not clear how to
assign numeric values in a non-arbitrary waywhen an event hasmore than two non-numeric
outcomes. If the light couldbe green, redor yellow, there is noobviousway to assignnumbers
to those values in order to measure covariance in an interpretable way.�

In contrast to traditional statistical measures, mutual information is de�ned in terms of
a joint probability distribution across the di�erent possible states of each variable. This does
not require that the variables take numeric values, only that their collective probabilities can
be de�ned. I will now give the de�nition of mutual information.

�.� De�ning mutual information

Mutual information can be understood as a measure of how di�erent the joint probabili-
ties of two variables are from how they would be if the variables were not statistically associ-
ated. Continuing our example, we can construct a joint probability distribution describing
the relationship between the coin and the light (table �). Mutual information uses the joint
distribution to measure the strength of correlation between coin and light.

�One non-obvious technique employed by statisticians is dummy coding. The three colours are treated as three
di�erent binary variables, so thatY1 is the event ‘the light is green’, with values of � and � standing for ‘yes’ and ‘no’,
and Y2 and Y3 standing for red and yellow lights accordingly. While these manipulations are possible, they are a
rather unwieldy way of squeezing non-numeric data into numeric form.
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green red

heads 1
2 �

tails � 1
2

Table �: A joint probability distribution describing the statistical relationship between a fair
coin and a light that can be green or red. Half the time the coin lands heads and the light is
green. Half the time the coin lands tails and the light is red. The other combinations of coin
face and light colour never occur.

Letting the coin be denoted byX and the light by Y , the actual joint probabilities are
p(X,Y ) while the distribution one would see if they were uncorrelated is the product of
unconditional probabilities p(X)p(Y ).� Mutual information is constructed by taking the
log ratio for each value of x 2 X and y 2 Y , log p(x,y)

p(x)p(y) , and summing over all possible
situations,� weighted by the actual probability of each situation p(x, y):

I(X;Y ) =
X

x,y

p(x, y) log
p(x, y)

p(x)p(y)

WhenX and Y are statistically independent the mutual information is zero, its minimum
possible value. That’s because statistical independence entails that the joint probability is
equal to the product of unconditional probabilities for every x and y: p(x, y) = p(x)p(y).
The ratio inside the logarithm is therefore � for every x and every y, which means that the
logarithm is � for every pair, which means the overall sum is zero. Mutual information takes
its maximum value when events are perfectly correlated, as in table �. This maximum is in
general unbounded, and is determined by the number of events inX and Y , their uncon-
ditional distributions and their conditional distributions with respect to each other. With a
minimum value of zero and a maximum that is determined by the probabilistic relationship
between X and Y , mutual information is a nice way to formalise the intuitive concept of
how strongly correlated two events are. So one way to interpret mutual information is as an
answer to the question: how strongly correlated areX and Y ?

We can now calculate the mutual information between the coin and the light. Taking
the logarithm to base �, the mutual information between the coin and the light is:

�Throughout I’ll use upper-case letters inside p(.) to denote probability distributions and lower-case letters
inside p(.) to denote speci�c probabilities.

�Here and throughout I am referring to the discrete form of mutual information which is de�ned in terms
of probability distributions. As an anonymous reviewer rightly pointed out, there is a continuous version which
is de�ned in terms of probability densities, and many of the situations in which we might want to apply mutual
information would be more suited to the continuous form. Since I’m aiming for simplicity in order to make a
prima facie case for treating structural representations in terms of information, I will continue to just talk about the
discrete form. Future work should investigate the consequences of adopting the continuous form.
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I(X;Y ) =
X

x,y

p(x, y) log
p(x, y)

p(x)p(y)

=
1

2
log

1
2

1
2 .

1
2

+ 0 + 0 +
1

2
log

1
2

1
2 .

1
2

=
1

2
log 2 +

1

2
log 2

= 1 bit

It is commonplace to report this result with a locution like ‘the light carries one bit of infor-
mation about the coin’. This means that the light, as an event or process that can take one
of two states, carries information about a coin �ip, which is also an event or process that can
take one of two states. Mutual information is measured over both event spaces, not over in-
dividual outcomes. In order to determine informational properties of individual outcomes,
we must turn to the decomposition of mutual information into its component parts.

�.� Decomposing mutual information

Philosophical discussions of information often advert to speci�c outcomes ‘changing the
probabilities’ of other outcomes. Theprobability of the coin landing heads (or having landed
heads) is in a loose sense changed by the occurrence of a green light, because the uncondi-
tional probability of heads is 1

2 while the conditional probability of heads given a green light
is �. We can take the log ratio between these to get what’s known as pointwise mutual in-

formation: log p(x|y)
p(x) = log 1

1
2
= log 2 = 1 bit. This is a measure between the speci�c

outcomes x = heads and y = green. We can build up to a quantity carried by the green
light across all situationsX by �nding the weighted sum of its pointwise mutual informa-
tion with respect to both coin outcomes (this relationship is described by Skyrms, ����, §�).
The resulting measure is called relative entropy and is denoted byD:

D(p(X|Y = y)||p(X)) =
X

x

p(x|y) log p(x|y)
p(x)

Relative entropy measures the information carried by a single event y 2 Y (say, the green
light) about all coin outcomesX . The relative entropy of the green light with respect to the
coin is:

D(p(X|Y = green)||p(X)) =
X

x

p(x|green) log p(x|green)
p(x)

= 1. log
1
1
2

+ 0

= log 2 = 1 bit
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The green light carries an average of � bit about coin outcomes because it carries � bit when
the coin lands heads and it doesn’t occur when the coin lands tails.�

We reach mutual information by taking the weighted sum of relative entropy for both
light colours:

I(X;Y ) =
X

y

p(y)D(p(X|Y = y)||p(X))

=
X

y

p(y)
X

x

p(x|y) log p(x|y)
p(x)

(de�nition ofD)

=
X

x,y

p(x, y) log
p(x|y)
p(x)

(defn. joint probability)

=
X

x,y

p(x, y) log
p(x, y)

p(x)p(y)
(defn. conditional probability)

As we saw, themutual information between coin and light is � bit. It might seem strange that
in our example all three quantities take the value � bit. It’s clear why that happens when you
note that relative entropy andmutual information are averages, not totals summed across all
possible states. The green light carries � bit across both coin face situations, because it carries
exactly � bit about heads and it never occurs when the coin lands tails. Since both the green
and red lights carry � bit about the coin, and each has a ��% chance of occurring, the light
as a system carries an average of 1

2 .1 +
1
2 .1 = 1 bit. Of course, if you ran multiple trials the

information would start to stack up: the light is conveying � bit per trial, so over N trials it
would convey a total of N bits. This is a sum rather than an average. Mutual information is
giving you the per-trial expected amount of information.

To reiterate, these three measures relate di�erent things or sets of things:

• The amount of information a particular sign y carries about a particular signi�ed x is
their pointwise mutual information.

• The amount of information a particular sign y carries about a set of signi�eds X is
their relative entropy.

• The amount of information a set of signs Y carries about a set of signi�edsX is their
mutual information.

In the previous subsectionwe interpretedmutual information as ameasure of the correlation
between coin and light. Given its decomposition into component terms, another way to
interpret mutual information is as an answer to the question: what is the average amount of

�Relative entropy is also called Kullback-Leibler divergence and has been used extensively in Bayesian cognitive
science, machine learning, and related areas (Itti & Baldi, ����, p. ����).
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pointwise mutual information carried by each sign about each signi�ed?�
In the next section I argue that this decomposition extends further. The components

of structured signs can be attributed quantities that describe how much information they
carry about the component elements of the signi�ed. The most interesting application is to
cognitive maps, but I will start with examples of simpler structured signs.

�. Measuring information in structured signs

Structured signs are those for which relations between sign components correspond to rela-
tions between components of world a�airs that are the referents of those components. This
rather laboured de�nition will become much clearer when we see a few examples. First I
should address the question of what relations are, which is a rather signi�cant topic in on-
tology (MacBride, ����). I’m taking a very simple realist approach, of the kind described
by Shea (����, p. ���): “On the thin notion of relation, any set of n-tuples corresponds to a
relation (an n-place relation).” Shea goes to great lengths to show how to cut down this huge
class of relations to pick out just those that constitute content in structural representations.
Fortunately, my task is much simpler: I am not aiming here to give an account of content,
but to describe informational relationships between signs and signi�eds – including infor-
mational relationships between relations within signs and relations within signi�eds. All I
require is that there are such relations, which many accounts of structural correspondence
assume and which the several examples in this section demonstrate. I will not o�er a princi-
pled way to individuate signs, signi�eds and relations, instead relying on examples which are
hopefully intuitively acceptable and which motivate the analysis.

�.� Example �: the taller-than relation

Let’s start with a very simple system. Consider a structured sign that depicts two referents
and a relation between them. It has eight components, which we’ll label with the �rst eight
letters of the Latin alphabet: A, B, C, D, E, F, G, H. Each possible sign is a combination of
two of these letters. We can imagine each letter to represent a person, and each whole sign to
be representing one person being taller than another. So the sign AB means ‘A is taller than
B’, which is an asymmetric and non-re�exive relation. Suppose that whatever is producing
these signs only takes into account two people at once (i.e. although it’s logically possible
that A is taller than B and C is taller than D, on a single ‘trial’ only one of these scenarios
is occurrent). Then there are �� possible signs in this system (seven signs per starting letter,
of which there are eight): AB, AC, AD, AE, AF, AG, AH, BA, BC, BD, . . . HD, HE, HF,
HG. To simplify things, we’ll say that no two people are the same height, and everyone has
an equal chance of being taller than anyone else.

The job of each letter is to indicate a person, and the job of the ordering of the letters is
to indicate a relation between two people. What we would like is a way to break down the

�There is another sense of ‘decomposition’ relating to mutual information that should be distinguished from
what I’ve described in this section. A technique known as partial information decomposition (Gutknecht et al.,
����) enables the information carried by multiple signs about a signi�ed to be split into three components: the
unique information that each sign carries and no other sign does, the redundant information that is carried by
more than one sign, and the synergistic information that is not carried by any individual sign but arises from their
combination. Whether or not there is an interesting relationship between the two senses of decomposition is a
question for the future.
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information quantity of a sign into the information provided by its component parts. Just
as we broke down themutual information across an entire system into the pointwisemutual
information associatedwith each sign-signi�ed pair, we now askwhether signs that are them-
selves structured can be broken down into some formal object associated with each compo-
nent. The good news is that we already know how much information each individual sign
contains. There are �� equiprobable signs. Each signi�es that a particular outcome, which
startswith a probability of 1

56 , is in fact occurrent, giving it a probability of1. Each sign there-
fore has a pointwisemutual informationwith its particular signi�ed of log 1

1
56

= log 56 bits
of information. This is the same quantity that a more laborious non-compositional system
of �� distinct signs would have. The established decomposition from mutual information
to pointwise mutual information works for compositional signs too, because it applies no
matter whether the sign itself is simple or compositional.

How can we break down the information in a compositional sign into the information
carried by each of its components? The idea is that a compositional sign carries information
in each of its components such that these contribute to the total information in the sign.
What will be of particular interest is whether the ordering itself carries information; that is,
if the relation between the symbolic components of the sign carries information about the
relation between the people in the room. Intuitively, it looks like we can make the case both
that it does and it does not:

• Yes, the ordering carries information: AnAB sign is distinguished from a BA sign only
by the ordering. Supposing these signs are equiprobable, then the orderingmust carry
� bit of information, because it’s enabling us to distinguish between these two cases.

• No, the ordering does not carry information: The �rst component carries log 8 bits
(because there are � possibilities for it), the second component carries log 7 bits (be-
cause there are only � possibilities after the �rst one has been given). When you add
logarithms you multiply the arguments, so the total amount of information carried
by the two components is log 8 + log 7 = log 56 bits. The sign only carries log 56
bits in total, so there’s no extra information for the ordering to carry.

Intuitions con�ict, but there is something wrong with the ‘No’ answer. By saying that the
�rst component carries log 8 bits and the second carries log 7, we are assuming that we al-
ready know which is which. Until you know the ordering, you do not know which compo-
nent was counted �rst. Anymeans by which you could get log 8+ log 7 bits of information
must be smuggling in information about the relation. The right way to do the sum is to say
that knowing the identity of one of the components (but not its position) carries log 4 bits.
That’s because each symbol appears in exactly �� of the signs. Knowing one symbol increases
theprobabilities of eachoutcomecontaining the correspondingperson from 1

56 to
1
14 , which

delivers log
1
14
1
56

= log 56
14 = log 4 bits. Once you know this �rst symbol, being told the sec-

ond does indeed impart log 7bits, evenwhen you don’t know the order: there are ��possible
signs and twoof themcontain this particular second symbol; log 14

2 = log 7. Overall, know-
ing the two symbols, but not the order inwhich they appear, imparts log 4+log 7 = log 28
bits. But we know that the whole sign carries log 56 bits in total. Therefore, since the whole
sign carries log 56 bits and the components carry only log 28 bits, we should conclude that
the ordering of the components carries log 2 bits. The total information carried by the sign
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can therefore be expressed as log 28 + log 2 = log 56 bits as required. The upshot is that
the relation between sign components carries �bit of information about the relation between
the referents of those components.

�.� Interpreting probabilities

Before moving on to more complex examples it’s worth re�ecting on the question of how to
interpret the probabilities that appear in informational measures. Discussions of informa-
tion in communication theory typically adopt a subjectivist viewpoint because the informa-
tion provided by a sign is relative to what you already know. The same is true in the examples
we’ve seen so far. The information provided by whole signs is relative to the existing knowl-
edge of an observer: if you already know the coin landed heads, then a green light doesn’t
provide you with information. The point extends to structured signs, where knowledge of
one of the components impacts the information carried by the others: if you already know
there is a B in the sign, then �nding out there is an A provides log 7 rather than log 4.

Since informational measures are de�ned in terms of probabilities their values will dif-
fer depending on the interpretation of probability one favours. A subjectivist interpretation
might say the green light carries di�erent amounts of information depending on who is ob-
serving it, while an objectivist interpretation might say it carries � bit regardless of who is
observing it. These labels aren’t perfect, since Scarantino (����) gives an ‘objective-relative’
interpretation that mixes them. A better way to understand these di�erent approaches is to
treat them as providing di�erent answers to the reference class problem: given a single out-
come, with which other outcomes should it be grouped in order to determine a probability
distribution over an event space (Hájek, ����; Millikan, ����)? Here I’m using ‘objectivist’
to mean one whowants to de�ne a reference class without appeal to potential observers (e.g.
Skyrms, ����), and ‘subjectivist’ to mean one who wants to de�ne a reference class by ap-
peal to potential observers (e.g.Millikan, ����; Scarantino, ����). For ease of exposition I’m
going to continue in a subjectivist or ‘relativist’ idiom. Given this approach, signs literally
change probabilities because they change observers’ knowledge with respect to which those
probabilities are de�ned. The amount by which probabilities are changed, and hence the
amount of information in a sign, is relative to what the observer already knows. This kind of
approach has been defended byMillikan (����) and Scarantino (����).

�.� Example �: the nominates-for-President relation

Things get a little more complicated when we include repetitions (AA, BB, ...). Perhaps the
sign is now indicating a re�exive relation like ‘nominates for President’. Because the statistics
describing the presence of di�erent components in the sign have changed, the relation carries
a di�erent amount of information. If you were told the signal has two As there is no more
information to receive about which signal it is, so no information for the relation to carry.
Since there are eight of these double signs, and �� signs overall, there is a 1

8 chance that the
relation provides no information and a 7

8 chance that it provides � bit as before.
The decomposition ofmutual information allows us to formalise these observations into

an average amount of information carried by the relation. However, there is a prima facie
problem measuring relative entropy and mutual information for the relation. Those mea-
sures require a variable y that takes values from event space Y . It’s not obvious that the
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relation can be described in this way. From one perspective, every sign contains the same re-
lation, namely ‘nominates for President’. From another perspective, we can describe these
relations di�erently, such as ‘nominates themself’ and ‘nominates someone else’. But it’s not
clear whether we can accurately say that the di�erence between AB and BA is that one con-
tains a di�erent relation from the other. We would have to de�ne the values of the relation
as something like ‘nominates a person designated by a letter later in the alphabet’ and ‘nom-
inates a person designated by a letter earlier in the alphabet’. Then in the original case these
have an exactly ��/�� chance of occurring, which is another way to capture the fact that the
relation carries � bit.

In the present case, where repetitions are allowed, there is a new value for the rela-
tion: ‘nominates themself’. The event space describing the relation could therefore be con-
structed as hnominates later, nominates earlier, nominates themselfi. What are the probabil-
ities here? The relation ‘nominates themself’ only occurs when both symbols are the same,
and that only happens on eight out of �� occasions, or 1

8 . The other two relations occur on
exactly half of the remainingoccasions, andhalf of the remaining 7

8 is
7
16 . Therefore theprob-

abilities associated with this way of carving up the event space of relations are
⌦

7
16 ,

7
16 ,

1
8

↵
.

Before calculating informational measures using this distribution, it is worth consider-
ing the problem of how to choose the values of the relation variable. Birch (����, §�) calls
the problem of how to carve up an event space the partition problem: “how are states of the
world to be individuated in any principled way, outside the context of simple formal mod-
els?” (Birch, ����, p. ���). The partition problem is particularly pressing when we need to
use an event space to de�ne some property we think ought to be speci�ed independently of
the interests of modellers (in Birch’s case this is semantic content).� There are a couple of
reasons why I think the problem can be sidestepped in our case. First, it is not clear to me
whether attributions of information in cognitive science need to be entirely independent of
the interests of scientists modelling cognitive representations. If it turns out they do need
to be independent, the partition problem would need more attention; however, theoretical
interest in information attribution has not been beset by problems of indeterminacy like se-
mantic content has, so the problem is not as vital. Second, since we are adopting a relativist
perspective on probability, it seems appropriate to adopt a relativist perspective on partition-
ing too. In the present example I chose a simple partitioning for ease of exposition; in general,
one observer’s ability to learn about the world from a sign might di�er from another’s. As
well as the information quantity di�ering for them, the actual discriminations they canmake
might di�er too. As a result, itmight be possible to appeal to observer capacities to determine
the appropriate partitioning for any particular sign. This is only the briefest sketch of a way
to avoid the partition problem. A thorough analysis would take a whole paper.

Getting back to the matter at hand, the relative entropy and mutual information can be
calculated using this distribution for Y . Consider �rst the relative entropy associated with
the relation ‘nominates themself’. This describes how much information you gain about
who has nominated whom when you learn that someone has nominated themself. Intu-
itively it should capture the fact thatwehave gone from��possibilities to eight, thus it should
be log 64

8 = log 8 = 3 bits. The full relative entropy is:
�The partition problem discussed here is not to be confused with a mathematical problem of the same name,

which has interesting properties from the perspective of computational complexity theory. Although I will raise
issues relating to that theory below, the mathematical partition problem has no bearing on the discussion.
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8
= 3 bits.

So the relation ‘nominates themself’ carries � bits. Similar calculations show that the other
two relations carry log 16

7 (slightlymore than �) bits each. Therefore themutual information
carried by this set of relations about the state of a�airs is:

I(X;Y ) =
X

y

p(y)D(p(X|Y = y)||p(X))

=
7

16
log

16

7
+

7

16
log

16

7
+

1

8
log 8

⇡ 1.419 bits.

Furthermore, di�erent pieces of evidence alter the expected contribution of the relation.
Suppose you are told that one of the relata is an A and the other is either an A or a B. Then
there are three possible signs: AA,AB,BA. Each of the possible relations appears exactly once
in this set of signs. Therefore, learning the relation uniquely picks out one sign from three,
which entails that each relation imparts log 3 bits. Each relation has changed the amount
of information it is providing. Receiving di�erent pieces of information about the compo-
nents changes the expected contribution of the relation. This result is consistent with the
relativist perspective on which information quantities are calculated with respect to a user’s
knowledge.�

�.� Example �: a simple map

Philosophers of cognitive science are often concernedwith the rich spatial structure of cogni-
tive maps, so we should apply this analysis to spatial relations. Consider a discrete map with
four quadrants, North, South, East andWest. Each quadrant can be one of two colours, red
or blue. As with all maps, every quadrant bears a spatial relation to every other quadrant.
Note that these relations are not necessarily unique: North bears the same relation to East as
West does to South (namely, being to the upper-left of).

As before, our intuitionsmight con�ict as to whether spatial relations are carrying quan-
ti�able information. There are 24 = 16 possible maps, so each map carries log 16 = 4

�Thediscussion in this section focuses on the information carriedby the structural relation about thewhole state
of a�airs. The information carried by the relation about the relation itself would just be the surprisal of that relation,
e.g. the information carried by the ‘nominates themself’ relation about the actual relation between nominator and
nominee is log 1

1
8

= 3 bits.
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bits (assuming equiprobability as always). Each quadrant’s colour carries � bit (red or blue),
for a total of � bits. As before, this is misleading. Learning that there is a red quadrant only
imparts log 16

15 bits, because �� of the possible maps have at least one red quadrant. Learn-
ing that there are two red and two blue quadrants imparts log 16

6 bits due to the six maps
with this combination of colours. If you are subsequently told of a relation between two of
those colours, you will learn further information. So for example, if you are told that one
of the red quadrants is to the upper-left of the other red quadrant, that gives you a further
log 6

2 = log 3 bits, because the reds must either be in the North and East or in theWest and
South. On the other hand, if you are told that one of the red quadrants is to the upper-left of
one of the blue quadrants, that only imparts log 6

3 = 1 bit, because there are three possible
maps (out of the six you’ve already whittled it down to) consistent with this new evidence.

As in the nominates-for-President case, the spatial relations between components of a
map carry di�erent amounts of information depending on the components themselves. If
wewanted, we could calculate the average information carried by a relation by summing over
all the representations it can participate in, averaged by their probabilities. In some maps,
the spatial relations will carry a great deal of information; in others they may carry very little.
Imagine the extreme case where amap happens to depict a territory with nothing in it. Then
the relations don’t tell you anything. If the map has a distance scale, that might tell you
something (i.e. how much of the territory is bare). But the relations between points aren’t
giving you that rich information usually associated with maps.

It might seem just wrong to try and attribute probabilities to a map, as if it were a Shan-
nonian signal selected from a set of possible signals. One might think that in order to at-
tribute probabilities to a representation, it must be selected from a set of available represen-
tations. That is after all how the basic Shannon framework is constructed. The source pro-
duces one outcome from a set of possible outcomes, each of which has its own probability
of being produced. The encoding scheme converts source outcomes into signals. Sometimes
this conversion is deterministic but it can be probabilistic (in any case a deterministic encod-
ing is a limiting case of a probabilistic encoding in which all the probabilities are either � or
�). The encoding scheme together with the probability distribution over source outcomes
determines a joint probability distribution over source outcomes and signals representing
them. If the source distribution is p(X) and the encoding is p(Y |X) then the relevant joint
distribution is p(X).p(Y |X) = p(X,Y ). It is this joint probability distribution that is
required for informational measures, in particular the mutual information between signals
and source outcomes.��

Given this picture an objection to my account runs as follows. De�ning informational
measures between a map y and its territory x requires that there be a joint probability dis-
tribution between their respective event spaces Y andX . Shannon de�nes joint probability
distributions by starting with a source distribution p(X) and multiplying it by the condi-
tional distribution de�ned by the encoding scheme p(Y |X). An encoding scheme is a pro-
cess by which signals are chosen probabilistically given a particular source outcome. Maps
and territories cannot be attributed a joint distribution in thisway, becausemaps are not cho-
sen probabilistically given a particular territory. We don’t have a stack of maps from which
we choose the correct one upon observing the territory. Rather, we construct a single map

��Even though the original application of mutual information measured the correlation between signal-before-
noise and signal-after-noise, contemporary philosophical discussion tends to follow Skyrms’s lead and consider the
mutual information between signals and source outcomes.
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by combining components that refer to aspects of the territory, in such a way that the map
components bear relations to each other that re�ect the spatial components of their referents
in the territory. Therefore, maps and territories can’t be attributed informational measures
by the same procedure informational measures are typically derived.

Let’s assume that one of the premises of this objection is true (and it does seemobviously
true): maps are not selected from among a set of possible maps, and cognitive maps certainly
aren’t. The question then is whether a joint probability distribution can be de�ned between
a map and its territory. It can’t be done in the Shannonian way – we don’t have a stack of
maps fromwhichwe choose the correct oneuponobserving the territory –but can it be done
in some other way? Rather than actually describing such a procedure I’m going to o�er an a
fortiori argument that the standard commitments of Bayesian cognitive science require that
such a joint distribution can be de�ned. This brings us close to a wide-ranging and impor-
tant debate in the philosophy of cognitive science regarding the propriety of the Bayesian
approach. Therefore, I’m going to outline those commitments of the Bayesian agenda that I
take to support my own argument here, and leave the wider problems for later. I’m hitching
mywagon to the possibility of Bayesian cognitive science, and if that program takes a tumble,
I’ll go down with it.

So, what is it about Bayesian cognitive science that makes me think joint probability dis-
tributions can be attributed to maps and their territories? In short, it is that the Bayesian ap-
proach always assumes that unobserved events can be represented with prior distributions,
and evidence pertaining tounobserved events can always be representedwith conditional dis-
tributions (commonly called likelihoods). On a Bayesian view, regardless of what the brain
is doing at an algorithmic and implementational level, on the computational level it can al-
ways be described as using priors and likelihoods to determine posterior distributions over
an unobservable event of interest, and then acting on the basis of that posterior.

For the problem at hand, the brain’s initial uncertainty about the territory it must nav-
igate can be expressed by a prior distribution over that territory p(X), and the map it uses
to guide it can be associated with a conditional distribution p(Y |X). Together these yield
a joint distribution p(X,Y ) which can be used to calculate informational quantities. It’s a
much bigger questionwhether (and how) these probabilities are explicitly represented in the
brain. Cautious Bayesian cognitive scientists don’t take a stance on exactly how probabili-
ties are represented, rather asserting that the Bayesian calculus captures something important
about how the brain deals with uncertainty (Perfors et al., ����, pp. ���–���). A strong re-
alist view would assert that all these distributions are explicitly represented and computed
over. A more modest instrumentalist perspective suggests that prior uncertainty can be at-
tributed on the basis of behaviour in the absence of evidence. For example, if a creature has
no cognitive map and no sensory guide, how does it search the territory for a particular goal?
If it searches randomly, its prior distribution can be represented as maximally uncertain.��
Similarly its search behaviour upon being provided with evidence yields for the human ex-
perimenter a way to determine what likelihood should be associated with that piece of evi-
dence.

My contention, in short, is that insofar as the cautious Bayesian approach is valid, both
priors and likelihoods can be de�ned in principle in the case of cognitive maps. Priors and

��Indeed this is an assumption made by Haldane and Spurway (����) and Wilson (����) in their calculations
of the informational quantities carried by the honeybee waggle dance and ant chemical trails respectively about the
location of food.
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likelihoods together de�ne the joint distribution required to de�ne informational measures
likemutual information. It’s amuch larger questionwhether theBayesian approach is indeed
valid, and how it ought to be pursued (Jones & Love, ����).

�.� Example �: binary strings

A surprising consequence of what I’ve said so far is that codes in standard communication
theory are structural representations. The spatiotemporal ordering of binary strings in a
transmitted signal corresponds to the spatiotemporal ordering of symbols in the sourcemes-
sage that the signal represents.�� If what I said in the taller-than case is correct, the orderings
of digits in at least some binary strings are carrying information over and above the informa-
tion carried by the digits themselves. And this seems like an undesirable consequence because
we don’t usually talk of the relations between digits carrying information. We say each digit
carries � bit of information. That’s why they are called bits: it’s short for ‘binary digit’.

Regardless how communication theorists tell the story, we are forced to follow the same
logic as earlier. Knowing the relation between the digits of a binary string makes the di�er-
ence between knowing only that there are e.g. two �s and two �s, and knowing whether it’s
����, ����, ����, etc. There are at least two reasons why we don’t usually impute structural
properties to binary strings. First, the relational structure is implicit in the spatiotemporal
structure of the symbolic code. In the standard communication-theoretic scenario we al-
ready know exactly which digit belongs in which slot because we are receiving digits in the
order in which they were sent. We don’t come across evidence like ‘there are two �s and two
�s’ without a speci�cation of where in the code they stand. Even in cases of noise, that’s not
the form in which reconstructed evidence appears.�� The fact that we aren’t typically forced
to consider the role of structural relations in binary strings is one reason they haven’t been
apparent. The second reason is that binary strings can be structuredwithout being structural
representations. Signs can have structure (comprising relations between their components)
without that structure representing the structure of a signi�ed. A binary string whose digit
order does not correspond to an ordering in the referent of the string is not necessarily a
structural representation. In the standard communication-theoretic model, the structure of
a signal involves the ordering of binary strings within it, and this ordering does correspond to
the ordering of symbols in the sourcemessage. Spatiotemporal ordering is assumed in typical
models of communication theory.

�.� Structure or information?

Part of what I’m trying to do is motivate the use of communication theory to understand
representation. It seems as though there is an idea �oating around that informational mea-
sures can deal with indicator states but not structural representations. I hope that I’ve at
least started to put a dent in that idea. The assumption behind this idea appears to be that
mutual information can onlymeasure the strength of correlation between two processes that
co-occur. Typical examples of indicator states carry information by co-occurring with their

��For an argument that communication-theoretic signals represent source messages, see Mann (����).
��More complex real-world scenarios do have to confront the problem of out-of-order data. The transmission

control protocol which forms part of the backbone of the internet is explicitly designed to account for and correct
inadvertent reordering of data packets during transmission, alongwithmany other functions improving connectiv-
ity.
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signi�eds, and mutual information is used to measure the strength of correlation between
them. But the assumption that co-occurrence is required is false: mutual information ap-
plies to any two variables for which a joint distribution can be de�ned. A joint distribution
could be de�ned for an indicator state that did not co-occur with its signi�ed, but signalled
its presence at a di�erent time and/or place.�� And a joint distribution can be de�ned for
structured signs and their signi�eds, because those probabilities need not be de�ned in terms
of co-occurrence. The fact that a particular sign changes the probability of a particular signi-
�ed need have nothing to dowith the time atwhich the sign and signi�ed occur. It is just that
models of sign-reading behaviour typically do involve co-occurrence. Cases frompsychology
and cognitive science (e.g. Rescorla, ����) and the models introduced by Skyrms (����) are
all like this. But it would be wrong to conclude, from the fact that models invoking mutual
information usually involve co-occurrence, that models invoking mutual information must
involve co-occurrence. Probabilities are not constrained like that. My map of India might
change the probabilities of spatial relations between Indian cities as they are now, or if it
is an old map it might change the probabilities concerning how these relations were in the
past. The joint probabilities between signs and signi�eds help us quantify howmuch can be
learned about one from observing the other, rather than how often they co-occur.

Even supposingmy reasoning so far is broadly correct, it is tempting to think that there is
a better mathematical tool to employ when discussing structural representations. Ameasure
calledKolmogorov complexity is often invoked in discussions of the information content
of individual mathematical objects (Li & Vitányi, ����, p. �). Since we are modelling struc-
tured signs like cognitive maps as mathematical objects, and since these don’t fall neatly into
the Shannonian paradigm (see section �.�), it might seem appropriate to use Kolmogorov
complexity to model their information content.

Kolmogorov complexity captures how ‘compressible’ an object is. Slightly more for-
mally, it is the length of the shortest computer program required to produce the object as
output. The following example will clarify the concept. Consider two binary strings:

010101010101010101010101

101111001000010111011111

The �rst requires a relatively short program to produce, something like ‘print “��” * ��’
which prints the two-digit string “��” twelve times. By contrast the second string is much
harder to compress. A computer program generating it would not bemuch shorter than the
string itself. The �rst string therefore has lower Kolmogorov complexity than the second. By
measuring the length of the shortest computer program required to produce amathematical
object, Kolmogorov complexity captures the compressibility or simplicity of objects. Since
we have beenmodellingmaps asmathematical objects, themeasure applies to them too. The
map of a completely bare territory requires a very short program to produce: the program
instructions simply say to leave every square blank and output the resultingmap. By contrast
a richly �ourishing territory withmany di�erent kinds of feature placed seemingly randomly
requires amuch longer program. The programmust specify each feature’s type and location.
If the features are distributed randomly there will be no saving available from compression.

��Thanks are due to an anonymous reviewer for reminding me that indicator states need not co-occur with their
signi�eds, even though canonical examples do.
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One might think that we should be using Kolmogorov complexity rather than mutual
information to capture the informational content of structured signs. A rule of thumb says
that static objects are measured with Kolmogorov complexity, while relations between ran-
domvariables aremeasuredwithmutual information. Notwithstandingmyearlier argument
about Bayesian cognitive science, it might seem more appropriate to use Kolmogorov com-
plexity rather than mutual information for representations like cognitive maps.

However, the rule of thumb that equates Kolmogorov complexity exclusively with in-
dividual objects cannot be taken too literally, because Kolmorogov complexity and mutual
information are not mutually exclusive. Binary strings have a Kolmogorov complexity when
they are treated as individual mathematical objects, but they also bear pointwise mutual in-
formation to source outcomes when they are employed as signals. So both types of measure
apply, and they are capturing di�erent things: one captures internal complexity of a sign,
while the other captures relations between the sign and its signi�ed.��

So the question we should ask is not ‘Do structured signs have Kolmogorov complexity
or mutual information?’, but ‘What do these measures capture, and how are they relevant
to what we care about?’ I have argued that mutual information captures the probabilistic
relationship between the relations borne between components of structured signs and the
relations borne between components of their signi�eds. Insofar as we are interested in the
mutual information between indicator states and signi�eds, we should be interested in the
mutual information between structured signs and their signi�eds too. It’s a further question
what Kolmogorov complexity contributes.

Despite everything I’ve said so far in praise of mutual information, there are restrictions
on its role and that of relatedmeasures in theorising about representation. Since the bene�ts
of structural representations are often said to be format-speci�c, and the same amount of
information can be carried by representations of di�erent formats, informational measures
alone cannot tell us what is bene�cial about one format over another. The thought here
is that there must be something beyond mere information-carrying that enables structural
representations to o�er more e�cient or �exible processing to cognitive systems. In the next
section I will �esh out this thought and assess the use of a complementary formal framework
– computational complexity theory – to support it. I will conclude that informal arguments
about the bene�ts of structural representation are not yet supported by the formal results
of computational complexity theory. Whether another formal framework can cash out the
bene�ts of structural representation I leave to future work. And whether we need a formal
framework to do this job at all is something I cannot argue for at length here. At the least,
I believe it would be worrying if there were no way to formally capture the bene�ts that
structural representations intuitively a�ord. Others may disagree, but it is this belief that
motivates my investigation for the remainder of the paper.

��Cover andThomas (����, §��.�) andLi andVitányi (����, §�.�.�) describe close formal relationships between
Kolmogorov complexity and the measures de�ned by Shannon, especially entropy. I will leave to future work the
question whether those relationships impact the claims I ammaking about mutual information.
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�. Structural representation and computational complexity

�.� Why structural representation?

The question that will occupy this section is: what are the bene�ts of structural represen-
tation? It looks as though any structured system of representation could in principle be re-
placed by an unstructured system that is carrying the same amount of information about the
same signi�eds. To construct such a system, arrange the structural representations in a list
and replace each in turn by a unique unstructured representation. Keeping all the proba-
bilities the same, we will end up with a set of unstructured representations that all bear the
same information to their signi�eds as did their structured counterparts. If every structured
system is equivalent to an unstructured system in terms of information-carrying, whymight
cognition involve structural representations at all?

Informal answers to this question point toward the relative ease of carrying out cer-
tain representational operations in certain formats. As CoelhoMollo & Vernazzani suggest:
“More appropriate formats will typically involve fewer, less complex, and less expensive com-
putations than less appropriate ones” (CoelhoMollo&Vernazzani, ����, pp. ��–�). It does
seem intuitive that certain computations are easier to carry out with structured signs. Be-
cause maps represent spatial relations with spatial relations, adding a new location to a map
automatically induces new relations between the new point and all existing points. If the re-
lational information in amapwere instead stored as a list of relations between points, adding
a single new point would seem to necessitate adding many new entries to the list, each de-
scribing the relation of the new point to one of the existing points.

However, we ought not rely solely on our intuitions to evaluate arguments about the
bene�ts of di�erent representational formats. Pylyshyn (����), for example, has demon-
strated the di�culty of establishing the claim that mental imagery is a special format em-
ployed for image-based thinking.�� Although our task is easier – stating the bene�ts of a cer-
tain format rather than establishing it is actually in use – the warning is nonetheless salient.
One way in which wemight want to rigorise the intuitive idea is by appeal to computational
complexity. This section will therefore consider the possibility of a computational complex-
ity analysis of structural representation for cognitive science. I will argue that the standard
application of computational complexity to cognitive science, inwhich it is used to constrain
computational-level hypotheses, is not suitable for establishing the bene�ts of structural rep-
resentation. I instead suggest applying computational complexity at the algorithmic level of
description.

Before getting started, I accept that the topic of this section may strike the reader as out
of step with the rest of the paper. I want to insist that there is at least a common ideology
between the information-theoretic perspective in the foregoing and the computational com-
plexity theory perspective below. On the one hand, philosophers have previously assumed
(or at least implied) that informational measures apply only to detectors or indicators, and
that a di�erent kind of relationship applies to structural representations; I have argued that
a careful application of information theory reveals that view to be unsupported. Similarly,

��A reviewer pointed out an argument from Dennett (����, §�.�), who describes a situation in which an arti-
�cial system is able to complete tasks that intuitively require image processing without employing internal iconic
representations at all (where iconic representation falls broadly within the category of what I am calling structural
representation).
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we are about to see that philosophers assume that di�erent representational formats enable
easier performance of computational (including cognitive) tasks; I will argue that careful ap-
plication of computational complexity theory reveals that that claim is similarly unsupported
by formal work. The common method here is the application of formal theory to assess in-
formal assumptions about representation. In the two parts of the paper we are investigating
the same kind of representation – structural representation – through the lens of two di�er-
ent formal theories, information theory and computational complexity theory. By the end
of this section it will be clear that the approach raises important questions about the ben-
e�ts of structural representation. Overall, formal methods can complement and illuminate
non-formal approaches in the philosophy of cognitive science.

�.� Computational complexity

To understand computational complexity we must �rst understand computational prob-
lems. A computational problem is a function f : I ! O. A function can be thought of as
a problem because for each input i 2 I , one can ask the question ‘what is the correct output
o 2 O such that f(i) = o?’ The development of algorithms that can solve computational
problems – that is, that can instantiate computational functions – is an important activity
in computer science. And the classi�cation of problems according to their di�culty is an
important theoretical pursuit, where ‘di�culty’ can be expressed in the precise formal terms
of computational complexity.

Computational complexity is a property of a computational problem. Roughly, it
captures the amount of computational resources required to solve the problem. Examples of
computational resources are time – not real time measured in seconds, but a computational
notion of time measured in terms of the number of computational steps required – and
space–not physical spacemeasured inmetres, but a computational notionof spacemeasured
in terms of the amount of memory required. In order to precisely measure computational
steps andmemory, a speci�cmodel of computationmust be employed. Typically the Turing
model of computation is used, on which one operational step of a Turing machine counts
as one time step, and each tape cell written to counts as one memory unit. More speci�cally,
measures of computational complexity are expressed in terms of how resource usage grows
as input size increases. This is re�ected in the use of big O notation: the big O describes, for
a problem, which function of its input size provides an upper bound on the time taken to
solve the problem.

Consider for example the problem of multiplying a positive integer by �. The input and
output domain are the same, namely the positive integers. Multiplying an input of size n
by � is the same as adding two n-digit numbers together, and the time complexity of this
problem is known to beO(n). This means that the number of steps an algorithmmust take
is at most cn where c is a constant. Although this might sound like a lot – both n and c

can in principle be anything – it is generally the case that problems of this complexity can be
feasibly computed for the kinds of inputs we’re interested in.

The informal notionof feasibility justmentioned is a key concept in computational com-
plexity theory and is more commonly known as tractability. A tractable problem is, infor-
mally, one that can be solved using a reasonable amount of resources. Problems are consid-
ered tractable when their complexity is a polynomial function of the input size. Problems
whose complexity is larger than this – say, an exponential function of the input size – are
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considered intractable (vanRooij, ����, p. ���). Surrounding the divide between tractable
and intractable problems are a variety of complexity classes, each characterised by a big-O
function associated with the problems in that class. The complexity classes form a hierarchy:
as one moves up the hierarchy, more and more problems are solvable in the time speci�ed
by the big-O function at each level (see Aaronson, ����, for a compendium of complexity
classes and known results).

The complexity of a problem may di�er from the complexity of an algorithm used to
solve it. A problem’s complexity for a given resource is equal to that of the most e�cient
algorithm that solves it (and there may be no single algorithm that simultaneously optimises
time and space). While a problem’s complexity for a given resource can never be greater than
that of an algorithm that solves it, an algorithm’s complexity may be much higher than that
of the problem it solves. The algorithm might solve the problem in a needlessly ine�cient
way. I will call an algorithm ine�cient if it takes more resources than necessary to solve a
problem. While some algorithms might be intractable, the tractable ones may be more or
less e�cient. This terminology captures the fact that di�erent algorithms can use di�erent
amounts of resources to solve the same problem.��

�.� Computational complexity in cognitive science

The past few decades have seen growing interest in applying computational complexity the-
ory to cognitive science. The basic idea is to evaluate hypotheses at the computational level
of Marr’s hierarchy (Marr, ����, p. ��) by considering the computational complexity of the
function that the hypothesis attributes to the brain (van Rooij, ����). If a computational-
level hypothesis attributes to the brain the ability to perform a function that turns out, when
appropriately formalised, to be intractable, then we can be con�dent the brain does not per-
form that function (at least, not for inde�nitelymany inputs of increasing size). Thismethod
of constraining computational-level hypotheses has been defended by Frixione (����), van
Rooij (����), and van Rooij et al. (����). Although this work is geared towards constrain-
ing hypotheses, there are other potential applications. van Rooij (����, p. ���) describes
testing algorithmic-level hypotheses by comparing reaction times of subjects with time com-
plexity of the proposed algorithm. In that case modi�ed versions of the complexity measure
might be more appropriate: computational complexity takes the worst-case scenario for the
amount of resources consumed in solving a problem for all possible inputs, but comparisons
with human subject performance might warrant measures of the average case instead (van
Rooij, ����, p. ���). Whichever measure is used, measuring the complexity of algorithms
o�ers amore �ne-grainedway to determinewhat the brain is doingwhen it solves a problem.

Can these considerations help answer the structural representation question? First the
bad news. The popular approach that seeks to constrain computational-level hypotheses by
rejecting intractable problems is not going to help answer our question. That’s because the
kinds of problems that are being solved by structural representation in cognitive science are
thought to be equally computationally complex no matter what format you use (van Rooij,

��There are several interesting connections between computational complexity, which is a property of prob-
lems or algorithms, and Kolmogorov complexity, which is a property of mathematical objects (Li & Vitányi, ����,
§�.�.�). Confusingly, the term ‘algorithmic complexity’ has been used for both Kolmogorov complexity and the
computational complexity of algorithms. Unfortunately I don’t have space to go into further detail about these
connections. As will become clear, there is a great deal more work to be done on the issues raised in this section,
includingon the relevance of the connectionbetween the two concepts for the questionof structural representation.
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����, p. ���). If this point extends to all possible formats – and that is generally considered
a likely outcome, known as the Invariance Thesis (Frixione, ����, p. ���), (van Rooij, ����,
p. ���) – then a problem that is intractable when coded non-structurally will not become
tractable when coded structurally. The notion of structural representation occurs in com-
puter science under the heading of analog computation,�� and there appear to be inherent
trade-o�s when switching between analog and digital formats. Savings enjoyed with respect
to one resource entail expenditure on another. For example, Vergis et al. (����) describe ama-
chine that compares the size of two positive integers using particles of two di�erent masses.
The authors show that for very large numbers that are very close together, themachinewould
have to be extremely large in order to enable discrimination between themasses. While a dig-
ital computer would require a lot of time to compare the sizes of two large integers, an analog
machine could save time but only at the expense of space. There appears to be general agree-
ment that trade-o�s of this kind are the rule at the computational level.

One ray of hope might come from the topic of parameterized complexity. It turns out
that certain hard problems can be cajoled into tractable form for restricted input domains.
The de�nition of complexity looks to the worst-case scenario for all inputs of each size when
determining how resource usage grows with input size, in e�ect treating all inputs of a given
size as equivalent. The �eld of parameterized complexity instead distinguishes inputs based
on the values of particular parameters they instantiate. In this way it is possible to determine
a restricted set of inputs for which resource usage does not grow inordinately fast, even if
usage grows too fast across all the inputs. The hope is to show that, for an hypothesised
computational function, the actual inputs encountered by brains belong to this restricted
class, enabling brains to employ a more tractable solution. Of course, if a brain encountered
an input thatwas in the di�cult class, it would be unable to solve it in a reasonable amount of
time. But if the inputs it typically encounters are nice, then we can safely posit an otherwise
intractable function after all. van Rooij (����) and van Rooij et al. (����) describe several
seemingly intractable problemswhose inputs canbeparameterised in thisway, thuswidening
the �eld of potential computational-level hypotheses.

While parameterized complexity is good news for cognitive scientists o�ering
computational-level hypotheses, it will not help us answer our question. We are not
positing intractable decision problems for which we want to �nd a restricted class of
nice inputs. Instead, we are positing that one representational format is in some sense
more e�cient than another for certain sets of problems. If there was a problem which
non-structural representation rendered intractable, but structural representation rendered
tractable for parameterised inputs, then there would potentially be an application for
parameterised complexity here. But just as computational complexity itself seems to be
equivalent across formats – at best, savings on one resource lead to expenditures in another
– the savings available from parameterisation appear to be equivalent too. van Rooij (����)
mentions parallel computers and quantum computers as obeying the same results, and to
my knowledge there has been no suggestion that analog machines are exceptions to the rule.
The conclusion seems to be that since complexity class membership isn’t format-relative,
answering questions about why certain formats are bene�cial can’t appeal to complexity
class membership. In particular, it can’t appeal to tractable-vs-intractable class membership.

��See for example Maley (����), who o�ers an account of analog computation in terms of analog representa-
tion and suggests it generalises to an account of structural representation, and O’Brien and Opie (����), who treat
structural and analog representation as synonymous.
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Now for the good news. Focusing on algorithms instead of computations opens up a
more �ne-grained set of questions about representation. If computational complexity is go-
ing to help, I suggest it will be at the algorithmic level rather than computational. A prob-
lem for which there are only ine�cient algorithms employing unstructured representations
might have e�cient algorithms employing structural representations. In order to spell this
out, we would need to regiment and formalise algorithmic-level hypotheses in the same way
van Rooij et al. (����, Appendix C.�) regiment computational-level hypotheses. It will be
necessary to use a model of computation that supports describing algorithms using both
structural and unstructured representations, or at least to use models that can be compared,
in the same way that Vergis et al. (����) (mentioned above) compare analog and digital ma-
chines solving an integer-comparison task. Only when algorithms can be fairly compared
in terms of e�ciency will we be con�dent that our claims about the bene�ts of structural
representation are sound.��

It might turn out that some combination of algorithmic e�ciency and parameterized
complexity is key to answering our question. Perhaps algorithms employing structured rep-
resentations are more e�cient because they more faithfully delineate the nice inputs from
the di�cult ones. This tempers my argument above that parameterized complexity does not
help: although it cannot help at the computational level, it might help at the algorithmic
level. In general we should draw on all the formal resources we can in order to answer our
question and justify or refute our intuitions.��

�.� Summary and future directions

Mainstream applications of computational complexity in cognitive science aim to constrain
plausible computational-level hypotheses. That isn’t our task. It is generally accepted that
a computational problem belongs to a particular complexity class regardless of how it is en-
coded. Therefore di�erent formats cannot place a problem into di�erent complexity classes.
For these reasons, the mainstream approach to complexity in cognitive science will not help
answer our question about the bene�ts of structural representation. Rather, if there is an
answer to the question why structural representation is used, it will concern the complexity
of algorithms rather than computational problems.

To apply computational complexity (whether at the algorithmic or computational level)
we need to model cognitive tasks as functions f : I ! O. We need to explicitly specify
inputs I and outputs O, and we need to be able to measure the size of an input i 2 I . If
there are tasks that cannot bemodelled neatly in this way, we need to develop a wider notion
of complexity. It is not yet clear whether the claim of Coelho Mollo and Vernazzani (����,
pp. ��–�), that di�erent formats enable “fewer, less complex, and less expensive computa-

��Maley (����) argues that the algorithmic level of Marr’s hierarchy does not apply to analog representation
(which here includes structural representation; see footnote �� on page ��). On his view, whereas digital compu-
tations are carried out by algorithms, analog computations are carried out by mechanisms. If this is right, in order
to achieve the task I am advocating in the main text, we must �rst �gure out how to compare the e�ciency of
algorithms to the e�ciency of mechanisms. This raises the question whether they are commensurate at all. The In-
variance Thesis suggests that they must be, somehow; beyond the trade-o� described by Vergis et al. (����), I don’t
know of work that says exactly how.

��Areviewer pointedout that theremaybe systems that entirely lack the ability toprocess certain representational
formats. In these cases computational complexity would not fully explain why the system uses the formats it does.
We would have to appeal to the further fact that certain formats cannot be used by the system at all.
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tions”, is backed up by formal theory.��
One aspect not yet mentioned is the error-tolerance of structural representations. A

small error in a structural representation can lead to a small error in output. Since com-
putational complexity typically treats computations as yielding strictly correct or incorrect
answers to problems, it seems to lack the formal tools to describe this feature. Although there
are concepts of bounded error (Aaronson, ����) and discrimination expenditure (Vergis et
al., ����), whether and how these correspond to the notion of error-tolerance as informally
understood for cognitive representations is a question for the future.

Furthermore, once we’re looking at cognitive systems, we see a third important class of
resources after time and space: metabolic expenditure. It is not obvious that the time steps
delineated in theTuringmodel correspondone-to-one to themetabolic costs of a brain carry-
ing out those steps. Amodel of computationmight inadvertently attribute identical costs to
twodi�erent algorithmic steps that in fact consumewildly di�erent amounts ofmetabolic re-
sources when instantiated in the brain. Therefore, to gain an accurate picture of the bene�ts
of structural representation, our computational model ought to attribute realistic resource
costs to the algorithmic (or mechanistic; see footnote ��) steps it encompasses.

In general, there is a lot more than just information-carrying to consider when applying
formal concepts to representation in cognitive science.

�. Conclusion

Structured signs carry information about their signi�eds just as unstructured signs do. I have
used simple examples to demonstrate how the information carried by a structured sign can
be decomposed into the information carried by its components and the relations between
them. The account relies on a relativist notionof probability; it is anopenquestionwhether a
similar story could be told from an objectivist perspective. Finally, informal, plausible claims
about the e�ciency enabled by structural representation have not yet been cashed out in
formal terms. I believe we ought to try to formalise the algorithms attributed to brains in
order to explicitly measure the improved performance structural representations intuitively
enable.
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