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The Price Equation Since Price: An Accessible
Account and a Generalization to Categorical

Variables
Stephen Francis Mann*

The Price equation is usually treated as a description of how the population average value
of a trait changes due to selection and other factors. Despite the fact that its generality is
often emphasised, the Price equation is typically only applied to numeric traits, like weight
and height. After a thorough yet accessible introduction to the numeric form, I derive a
version of the Price equation for categorical traits, like colour and shape. The new equation
describes how the distribution of types, rather than the population average, changes due to
selection and other factors. I argue that this is a useful and conceptually sound extension
of the traditional Price equation formalism. Although categorical traits can be represented
numerically via dummy coding, I argue that the new version of the equation introduces an
important perspective that previous versions lack: selection does not just change averages,
it changes distributions.
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1. Introduction

The Price equation is one of the best-known results in theoretical biology. As usually introduced,
it describes change in the average trait value of a population as a consequence of two neatly
distinguishable factors: selection, and everything else. By distinguishing change due to selection
from other sources of change, the equation suggests a formal definition corresponding to the
informal concept of selection at the heart of evolutionary biology. While formalisms of this kind
had been presented before (e.g., Fisher 1930; Haldane 1932), one distinguishing aspect of the
Price equation is that it is substrate-neutral, indicating an extension of selectionist thinking to
domains beyond biology (Strand et al. 2022; Knudsen 2004) including cultural evolution (El
Mouden et al. 2014; Jäger 2010).
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Since George Price’s derivation of the equation (Price 1970), much has been written about
its interpretation and application, and discussion continues (Okasha and Otsuka 2020; Gardner
2020; van Veelen 2020; Frank 2012a, 2012b; Luque 2017). However, discussions of the Price
equation treat the traits whose change is at issue as numeric. That is, the traits in question are
properties like height and weight: they are represented by numeric variables. The quantity whose
change the equation describes in these cases is the average trait value across the population, such
as the average height or average weight. If, like Price (1995), we are tempted to seek a general
theory of selection, it does not seem plausible that the only traits subject to selection processes are
those associated with numbers. Populations can be subject to selection on any trait whatsoever,
including categorical traits such as colour and shape. Although techniques such as dummy coding
can be employed to represent categorical traits in numerical form, these are workarounds that
are used because no better method is available. Since the standard Price equation was developed
with numeric traits in mind, this poses the question: is there a better way to represent selection
on categorical traits?

Here, I derive a version of the Price equation that applies to categorical traits. Categorical
variables representing these traits are one-hot vectors. As I explain below, one-hot vectors are
mathematical objects well-suited to representing discrete properties that are not numerically
measurable. I show that several known features of the numeric Price equation carry over to the
categorical form, including its application to multi-level evolutionary dynamics. This shift in
perspective motivates us to think about how selection changes the distribution of types in a
population, not just the average value of some measurable quantity.

I begin with an overview of the general approach to selection developed by Price and the
derivation of the numeric Price equation (section 2). I then derive a categorical Price equation
(section 3) and demonstrate some applications (section 4). Section 5 discusses outstanding issues
and section 6 concludes.

2. TheNumeric Price Equation

This section lays out the standard form of the Price equation. I give a rather detailed introduction
to the formalism, so that readers new to the topic will be able to get up to speed. Readers familiar
with the Price equation literature can safely skip to section 2.4, where the limitations of the
traditional approach are discussed and the new work in the rest of the paper is motivated.

2.1. The Framework

In a posthumously published manuscript, George Price (1995) stated his belief that the con-
cept of selection applies far more generally than evolutionary biology. The putative generality
of selection has been discussed by many scholars with varying aims and scope (for a small sam-
ple, see D. T. Campbell 1956; Dennett 1995; Hull 2001; Hodgson 2004; Popper 1972; Csányi
1980; J. O. Campbell 2016). Price agreed with the core contention of these theorists that selec-
tion should be construed as a process by which variant types in a population are differentially
retained. This informal concept is substrate-neutral and, when the term ‘population’ is read suf-
ficiently broadly, applies to a great deal of phenomena both in everyday life and across scientific
disciplines. Consider the following examples, given by Price, of diverse processes satisfying the
informal characterisation:
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• A grocer has many apples, some good, some bad. A discerning shopper picks only good
quality apples, placing them in her basket. Treating the grocer’s apples as the initial popula-
tion and the shopper’s chosen apples as the subsequent population, there is higher average
quality in the subsequent population. There has therefore been selection on quality.

• A population of organisms possesses many alleles, some better at producing descendants
that will survive and reproduce, some worse. In the course of environmental interactions,
those organisms with better survival prospects produce successful gametes, i.e., gametes
that in fact go on to constitute offspring. The initial population is all the alleles and the
subsequent population is the collection of alleles possessed by successful gametes. There
is higher average reproductive success among successful gametes’ alleles, because all have
proven to be at least somewhat adept at contributing to successfully reproducing organ-
isms. There has therefore been selection on reproductive success.

• A row of flasks contains a solution at different concentrations. A chemist mixes them by
taking more solution from flasks with greater concentration, and less from flasks with
lower concentration. The resulting mixture will have a greater concentration than the
average of the original set of flasks. There has therefore been selection on concentration.

To unify these and many other examples Price developed a formal framework within which pop-
ulational processes from any domain could be represented. He then defined a formal criterion
by which it can be determined, for any change in the average trait value of a population over
time, whether or not selection has occurred. To do so he introduced formal tools founded on
three basic definitions: packages, trait values, and population share.

First, Price conceived of packages as the population variants on which selection can operate.
Packages are the different types that make up the population whose trait values are changing
over time. The packages of which a population is comprised must stand in one-to-one corre-
spondence before and after selection (figure 1). The populations in question can be made up of
concrete objects such as apples or chemical solutions, informational sequences such as alleles, or
even abstract entities such as pieces of music. Packages are indexed by 𝑖.

Second, trait values are properties of packages. Apples can be of good or bad quality, chem-
ical solutions can have different concentrations, alleles can have different reproductive success.
Traits with respect to which selection takes place are labelled 𝑧. The trait value of package 𝑖
before selection is 𝑧𝑖. For example, suppose we define the trait apple quality such that the worst
apples have 𝑧 = 0 and the best apples 𝑧 = 1, with others taking intermediate values. Every
individual apple 1, … , 𝑖, … , 𝑁 is assigned a trait value 𝑧1, … , 𝑧𝑖, … , 𝑧𝑁. Packages after selection
are categorised in terms of which original package they are descended from, and 𝑧′

𝑖 denotes the
average quality of package 𝑖’s descendants. For the apples in the grocery example, every apple’s
descendant is simply itself. Supposing individual apples do not change quality during the time
the shopper makes their decision, then 𝑧′

𝑖 = 𝑧𝑖 for all 𝑖. On the other hand, supposing handling
apples tends to degrade their quality, and the shopper handles every apple in the shop before
making a choice, then 𝑧′

𝑖 ≤ 𝑧𝑖 for all 𝑖.
Finally, population share 𝑝𝑖 measures how prevalent each package is in the population. In

the case of chemical solution, this is just the volume of solution in each flask. For discrete
items such as apples, we can model each package as having the same population share. It will
be mathematically convenient to define each package’s population share such that the sum of
population shares is 1. When the population share of every package is equal, each has the value
1
𝑁 , where 𝑁 is the total number of packages (likewise, the total volume of chemical solution
could be normalised to sum to 1). It is sometimes helpful to think of 𝑝𝑖 as the probability of
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Figure 1: Price’s selection framework. A population contains 𝑁 types conceived as distinct ‘packages’
and indexed by 𝑖. Each package has population share 𝑝𝑖 at some earlier time and its descendants have
population share 𝑝′

𝑖 at some later time. The trait 𝑧 is a measurable property of all entities in the population.
Trait value 𝑧𝑖 is the value of this property for the entities in package 𝑖, and the subsequent trait value 𝑧′

𝑖 is
the average value of this property across the descendants of package 𝑖. Adapted and relabelled from Price
(1995, fig. 4, 392).

observing package 𝑖 if you sampled randomly from the population. This is the case with the
apples: if we sample randomly, every apple has an equal chance of being observed, so each
has a population share of 1

𝑁 . The population share of 𝑖’s descendant is 𝑝′
𝑖. Apples not chosen

have 𝑝′
𝑖 = 0, because randomly sampling from the shopper’s basket yields zero probability of

observing an apple that isn’t in it. Again the 𝑝′
𝑖s are defined such that they sum to 1. Assuming

at least some apples stay in the shop, the total number of selected apples is smaller than the
starting set. Therefore, each 𝑝′

𝑖 is greater than each 𝑝𝑖: apples increase their population share by
being selected.

It is important to remember that the terms describing the future population, 𝑧′
𝑖 and 𝑝′

𝑖, relate
to descendants of individuals that were type 𝑖 in the original population, and not to individuals
who happen to be type 𝑖 in the subsequent population (see again figure 1). For example, if a
population of organisms is distinguished by their height, package 1 might contain individuals
with a height of 𝑧1 = 160 cm while package 2 contains individuals with a height of 𝑧2 = 170 cm.
If an individual from package 1 has an offspring who, due to mutation, grows to be 170 cm, they
count towards the average subsequent trait value 𝑧′

1, not 𝑧′
2, and contribute to the subsequent

population share 𝑝′
1, not 𝑝′

2.

2.2. Putting the Framework to Work

Further useful quantities can be derived from these basic terms. The average quality of all the
apples in the grocer’s shop, weighted by their population share, is the total weighted quality
divided by the total share (Price 1995, 391; variables changed for consistency):
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𝑧 = ∑ 𝑝𝑖𝑧𝑖
∑ 𝑝𝑖

=
∑ 𝑝𝑖𝑧𝑖

1

= ∑ 𝑝𝑖𝑧𝑖

The Greek letter capital sigma, ∑, denotes a sum of all the terms indexed by 𝑖 (this symbol is
used because both ‘sigma’ and ‘sum’ begin with the letter s). So ∑ 𝑝𝑖 says ‘add together all the
values of 𝑝𝑖,’ while ∑ 𝑝𝑖𝑧𝑖 says ‘add together all the products 𝑝𝑖𝑧𝑖.’ After selection, the average
quality of apples in the shopper’s basket is calculated the same way:

𝑧′ =
∑ 𝑝′

𝑖𝑧′
𝑖

∑ 𝑝′
𝑖

= ∑ 𝑝′
𝑖𝑧′

𝑖

If the shopper is discerning, 𝑧′ will be larger than 𝑧. In this case the total change in average quality
Δ𝑧 = 𝑧′ − 𝑧 will be positive. Here Δ is the Greek letter capital delta, which is often used to
signify the change or difference in a value (because both ‘delta’ and ‘difference’ begin with d). If
the shopper instead chooses randomly, we would expect the average value of their apples to be
the same as the average before selection. Then the total change is zero.

Finally, the selection coefficient 𝑤𝑖 of package 𝑖 is defined as the ratio of its population share
before and after selection, 𝑤𝑖 = 𝑝′

𝑖
𝑝𝑖

. In biological settings it is usually considered synonymous
with relative fitness. The selection coefficient of an apple that is not chosen is 0, because its 𝑝′

𝑖
is defined as 0. The selection coefficient of chosen apples is greater than 1, because each 𝑝′

𝑖 is
greater than the corresponding 𝑝𝑖. From this definition, package 𝑖 has been selected when its
later population share is larger than its earlier population share; that is, when 𝑤𝑖 > 1. Conversely
the package is selected against when 𝑤𝑖 < 1.

2.3. The Price Equation

When there is a change in the average value of a trait, how do we know whether that change is
due to selection? We cannot ignore the fact that processes other than selection affect trait values.
Rough handling degrades the quality of apples. Alleles can mutate during transmission, leading
them to have diminished reproductive success. A quantity of solvent might evaporate from a
solution, leaving it at a slightly higher concentration. All of these processes affect the value of
𝑧′, and so contribute to the total change Δ𝑧.

In order to isolate the effect of selection, it would be helpful to neatly split the total change
into two pieces:

Δ𝑧 = Δ𝑠𝑧 + Δ𝑡𝑧 (1)
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Δ𝑠𝑧 would be the change in average trait value due to selection, hence the subscript 𝑠.1 Δ𝑡𝑧
would be the change in average trait value due to other factors. Originally these other factors
were associated with the concept of transmission bias, hence the 𝑡. We’ll see later that more than
just transmission bias falls under this second term.

Writing down equation (1) is all very well. But there seems to be no guarantee that Δ𝑧
separates neatly into two parts and no guarantee that one of these parts corresponds to the
informal notion of selection. In deriving his eponymous equation, Price showed that Δ𝑧 does
indeed separate into two parts and further argued that one of these captures change due to
selection. Price (1970) showed that the total change can be written as follows (Okasha (2006,
22) gives a derivation in terms similar to the notation used here):

Δ𝑧 = (∑ 𝑝′𝑧 − ∑ 𝑝𝑧)⏟⏟⏟⏟⏟⏟⏟⏟⏟
change due to selection

+ (∑ 𝑝′𝑧′ − ∑ 𝑝′𝑧)⏟⏟⏟⏟⏟⏟⏟⏟⏟
change due to transmission

Price argued that the first set of brackets should be identified with Δ𝑠𝑧, the change due to
selection, while the second set of brackets should be identified with Δ𝑡𝑧, all other sources of
change. It’s not obvious that those terms capture our pretheoretic notion of selection, so the
equation bears some examination. Let’s take a closer look at the selection term:

Δ𝑠𝑧 = ∑ 𝑝′𝑧 − ∑ 𝑝𝑧 (2)

This is a difference between two weighted averages. We are comparing the trait values of the
initial set weighted by the population share of their descendants with the trait values of the initial
set weighted by their own population share. If a certain trait value leads to proportionally greater
descendants than its current share, its component of this sum will be positive. If a certain trait
value leads to proportionally fewer descendants than its current share, its component of this sum
will be negative. In short, we are quantifying the change in population share that can be associated
with trait values. This is precisely the sense in which trait values can be selected.2

The transmission term accounts for a different source of change:

Δ𝑡𝑧 = ∑ 𝑝′𝑧′ − ∑ 𝑝′𝑧 (3)

This is the difference between the actual subsequent average trait value (∑ 𝑝′𝑧′), and what that
average would have been if trait values didn’t change (i.e. if 𝑧′ = 𝑧, so ∑ 𝑝′𝑧). The term therefore
captures the deviation from perfect retention of package trait values over time. In other words,
it describes how trait values within packages change, regardless of changes in population share.
This is why the term is said to capture sources of change other than selection.

1. As is well known, the term labelled Δ𝑠𝑧 here turns out to include certain kinds of change due to random
drift (Okasha 2006, §1.4.1). For reasons of space I do not discuss drift in this paper. The models can be treated as
simplifications of real-life processes in which drift is stipulated not to occur.

2. Here and throughout, terms describing selection do not distinguish between selection-for and selection-of.
In other words, the change in population share is associated with trait values but is not necessarily caused by them
(Sober 1984, §3.2). It is well known that the Price equation cannot by itself determine whether trait values were
causally responsible for selection; this will also be true of the categorical version presented below. For the purposes
of this paper I sideline this issue.
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Here is a worked example. Suppose the shopkeeper has three apples, of good, medium,
and bad quality: 𝑧 = 0.9, 0.5, 0.1. A shopper comes along and picks the good apple. Before
selection, each apple has the same population share: 𝑝 = 1

3 , 1
3 , 1

3 . The average trait value is
∑ 𝑝𝑧 = 0.9+0.5+0.1

3 = 1.5
3 = 0.5. After selection, the shopper has chosen just the good apple.

Population shares are now 𝑝′ = 1, 0, 0, and the average trait value is ∑ 𝑝′𝑧′ = (1× 0.9) + (0×
0.5)+(0×0.1) = 0.9. The total change in average trait value is ∑ 𝑝′𝑧′−∑ 𝑝𝑧 = 0.9−0.5 = 0.4.
The change in average trait value due to selection is ∑ 𝑝′𝑧 − ∑ 𝑝𝑧 = 0.9 − 0.5 = 0.4. The total
change is equal to the change due to selection. They are equal because in this example apples
don’t independently change in quality over time. All the change is accounted for by selection.
Suppose instead apples do change their quality over time. In particular, suppose the shopper
roughly handles all apples in order to determine which is best. Rough handling degrades apple
quality by 0.05. Then 𝑧′ = 0.85, 0.45, 0.05. Now the overall change is 0.85 − 0.5 = 0.35. The
change due to selection remains the same, 0.4. But the change due to other factors is −0.05.
Figure 2 depicts the two sources of change contributing to the overall change.3

Figure 2: The numeric Price equation partitions change in average trait value Δ𝑧 into two parts: change
due to selection, and everything else.

2.4. The Price Equation Assumes Variables Are Numeric

The Price equation is almost universally treated as applying to numeric variables.4 This can be
seen from the fact that the change due to selection, Δ𝑠𝑧, is almost always manipulated into the
following statistical form (Okasha 2006, 22):

Δ𝑠𝑧 = cov𝑝(𝑊, 𝑍)

3. What if the shopper chooses randomly, but happens to choose the best apple by accident? This would also
lead to a positive value for the selection term, but we would not think of it as ‘selection’. This kind of case is akin
to drift. Again, I stipulate that drift does not occur in these models. All changes that fall under the selection term
are due to inherent properties of the entities in question (or at least relational properties between the entities and
some aspect of the selection process, such as the shopper’s visual field). How to model the difference between
selection and drift is discussed by Okasha (2006, §1.4.1). How to determine whether a real-life process is a process
of selection or drift – and whether there is always a clean-cut distinction – is a huge question not to be treated here.

4. One possible exception is Okasha (2006, 24), who mentions using the Price equation to model selection
on blue-coloured entities in a population. However, he does this by converting the trait ‘blueness’ into a numeric
variable using a dummy-coding scheme (to be introduced later in this section), so perhaps this does not count. I
am unaware of discussion of the Price equation and categorical traits that does not counsel translating those traits
into numeric variables. Even Price (1995, 394), when talking about selection for “attributes of mood and subject
matter” in pieces of music, suggests that they must be “quantitatively evaluated”.
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The term cov𝑝(𝑊, 𝑍) is the covariance between selection coefficients 𝑊 and trait values 𝑍 (which
are now being treated as random variables, hence are capitalised). Covariance is a statistical
measure of two numeric variables that describes their linear relationship. If they are both high
for the same packages and both low for the same packages, we say they positively covary, and
their covariance is positive. If one is low while the other is high and vice versa, we say they
negatively covary, and their covariance is negative. If the high and low values do not pattern
together in any way, covariance is zero.

The covariance between trait values and selection coefficients quantifies the change in the
average trait value that is due to selection. This makes intuitive sense: if higher trait values are
associated with higher selection coefficients, there will be a greater population share for packages
with higher trait values in the next generation. So long as positive covariance is maintained,
average trait values will increase over time. On the other hand, if lower trait values are associated
with higher selection coefficients, average trait values will decrease over time. The covariance
formulation is possible because 𝑧 is assumed to be numeric.5

The Price equation also enables more nuanced descriptions of the action of selection. When
the average trait value changes due to an association with fitness, we say there has been direc-
tional selection. However, there can be selection even in cases where the trait value average itself
does not change at all. Stabilising selection occurs when a specific trait value is favoured. Sup-
pose that the current average trait value is optimal. Selection might act to prune away values
both higher and lower than the optimal, thus reducing the variance of the distribution while
keeping the average the same.6 Capturing stabilising selection with the Price equation is as
simple as defining a trait value 𝑧∗ = (𝑧 − 𝑧)2. When defined this way, 𝑧∗ is the variance of
the distribution. Applying the Price equation to 𝑧∗ tells you how 𝑧∗ changes, thus telling you
how the variance of 𝑧 changes: when selection causes the variance to decrease, cov𝑝(𝑊, 𝑍∗) is
negative, indicating stabilising selection. The average and the variance are called moments of
the trait distribution, and higher moments can be captured by defining further traits (𝑧 − 𝑧)3,
(𝑧 − 𝑧)4 and so on. Applying the Price equation to each of these constructed traits reveals how
selection changes the moments of the distribution (Rice 2004, 178). And since the moments of
a distribution collectively define its overall shape, the set of Price equations describing changes
in moments collectively describe the overall change in shape of the distribution. All of this is
possible when 𝑧 is numeric, and so the moments of the distribution are well-defined.7

So far, so familiar. The rest of the paper concerns a constraint on the Price equation that has
remained virtually unacknowledged.8 Covariance is a relationship between numeric variables.
But there can presumably be selection on traits that are best represented as categorical variables.
Indeed, the very notion of change in the average value of a trait does not apply when the trait

5. An overlooked issue arises in the derivation of the covariance term, which requires substituting 𝑝′
𝑖 for 𝑝𝑖𝑤𝑖.

It is possible that 𝑝𝑖 and 𝑝′
𝑖 are well-defined while 𝑤𝑖 is not. For example, if 𝑝𝑖 = 0 and 𝑝′

𝑖 > 0, the substitution is
problematic. Intuitively this combination of values represents migration into the population, which I discuss further
in section 4.3. Halting the derivation before reaching the covariance term enables migration to be represented.

6. In this simplified example, directional and stabilising selection are mutually exclusive. Depending on the
definition used, directional selection may be compatible with stabilising selection (Rice 2004, 176).

7. In the rest of the paper I will continue to speak of the Price equation describing the change in the average
value of a trait. This tacitly includes all the moments of a distribution, because the moments are defined as averages
of the constructed traits (𝑧 − 𝑧)2, (𝑧 − 𝑧)3, and so on (Rice 2004, 176–8).

8. Precursors include Jablonka and Lamb (2020, 69), who call for an “appropriately extended Price equation,
reframed in informational terms,” andBourrat (2024, 14), who suggests extending the work of Frank (2012a) on the
relationship between the Price equation and information theory. My primary motivation is also understanding the
informational perspective on selection; the categorical form of the Price equation described herein is a preliminary
step toward that goal.

 OPEN ACCESS - PTPBIO.ORG

http://ptpbio.org


MANN: PRICE EQUATION SINCE PRICE 9

in question is categorical, yet it seems that these traits can still be selected.9 An example will
illustrate this problem. Suppose a child’s favourite colour is red, and they are choosing gifts
from a shop’s collection of balls. There are red, green and blue balls in the shop bin, and the
child chooses all the red balls. By analogy with the apple case, there has clearly been selection
for colour. Yet there is no natural way to assign the different colours to numbers such that we
should say there has been selection for an ‘increase in average trait value’. That is because an
equally acceptable assignment would yield the result that there has been a decrease in average
trait value, or no change at all. For example, if we assign red = 0, green = 1, blue = 2, then there
has been a decrease in average trait value; if on the other hand we assign red = 1, green = 0, blue
= 2, then there has been no change (assuming equally many starting balls); finally, if red = 2,
green = 1, blue = 0, then there has been an increase in average trait value. How, then, might
Price’s framework support a truly general definition of selection?

As mentioned in the introduction, there is a workaround to this problem (discussed by
Okasha 2006, 24). Instead of a single categorical trait ‘colour’ with values red, green, and blue,
we can define three different binary traits ‘red’, ‘green’, and ‘blue’, each of which can be either 1
or 0 (in statistics this is known as dummy coding). A ball gets the value 1 for the red trait if it is
red, and 0 for the other traits. Then three different Price equations can be applied, each of which
describes selection on one of these dummy traits. If the child chooses the red balls, the three
Price equations will reveal that there has been selection in favour of being red, selection against
being green, and selection against being blue. This seems to be exactly the result we want, albeit
using three equations instead of one. However, the equation I present in section 3 is, I believe,
a more principled solution to the problem of representing selection on categorical traits. It is
more principled because it does not treat a single trait as comprising separate dummy traits. It
therefore requires a single equation rather than multiple equations, regardless of how many trait
values there are. I compare my solution to the dummy coding approach in section 5.2 – they are
in fact quite closely related.

In order to adequately capture selection on categorical traits in a formal framework, we have
to change our interpretation of just one of Price’s terms. The next section shows how.

3. A Categorical Price Equation

3.1. Capturing Selection: Distributions, Not Averages

I propose that the Price equation can be used to capture selection on categorical traits if we
change our interpretation of one of its central terms. We will end up with a description of the
change in the distribution of types in a population due to selection, as opposed to the change in
average trait value. As with change in average trait value, change in the distribution of types
can be segregated into change due to selection and change due to other factors. The goal is to

9. Several commentators on this paper have independently suggested that what is most significant about the
Price equation is its quantification of selection in terms of covariance. The decomposition into two terms is for
them of less interest – a stepping stone to the genuinely impressive result. I was somewhat surprised by this view
as it so directly contrasts with my own: I believe the focus on covariance has (at least partially) obscured the fact
that selection can operate on traits that are not numeric, while the distinction between change due to selection and
change due to transmission remains a fundamentally interesting formal achievement. Because the manuscript was
largely complete before the breadth and depth of the opposing view became apparent to me, I have not dedicated
space here to defending my own perspective. Instead I will demonstrate how to derive a categorical version of
what I still think is worth calling the (or a) ‘Price equation’, even though it does not contain a covariance term. I
hope that the reader will recognise value in this representation, and that through its derivation and the subsequent
discussion more light will be shed on the relative value of these two aspects of the Price equation.
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represent this change, and this decomposition, in some manner that does not require the average
value to change in order that there be selection.

The good news is that we can still use key features of the Price equation to do this. To see
how, first let each 𝑧𝑖 be the vector whose values are all zero except for the 𝑖th entry, whose
value is 1. This is called a one-hot vector, a common way of representing categorical variables.
For example, the red, green and blue balls in the shop would be represented by the vectors
𝑧1 = ⟨1, 0, 0⟩ , 𝑧2 = ⟨0, 1, 0⟩ and 𝑧3 = ⟨0, 0, 1⟩. The assignment of colours to vector entries
is arbitrary, but none of the calculations we will carry out are affected by these assignments. In
effect, the vector representation condenses multiple dummy-coding variables into a single vector
variable. This enables us to derive a single Price equation for the whole population.

Now the distribution of balls in the shop bin can also be described by a vector. If they are
initially evenly distributed, the population distribution is 𝑍 = ⟨1

3 , 1
3 , 1

3⟩. This can be thought
of as describing the probabilities of choosing each package when picking at random from the
population. And if we let the individual 𝑝𝑖 be the individual population proportions as before,
the overall distribution is equal to the sum ∑ 𝑝𝑧:

∑ 𝑝𝑧 = 1
3 ⟨1, 0, 0⟩ + 1

3 ⟨0, 1, 0⟩ + 1
3 ⟨0, 0, 1⟩

= ⟨1
3 , 13 , 13⟩ = 𝑍

In short: when 𝑧 is a numeric variable, ∑ 𝑝𝑧 is a population average 𝑧; when 𝑧 is a categori-
cal variable (i.e. a one-hot vector), ∑ 𝑝𝑧 is a population distribution 𝑍. In both cases we are
dealing with a weighted sum, it’s just that weighted sums are averages for numeric values 𝑧 and
distributions for categorical values 𝑧. Since the Price equation expresses relationships among a
collection of weighted sums it looks as though it can be written exactly as before. The only differ-
ence is it no longer describes the change in average trait value Δ𝑧 but the change in population
distribution Δ𝑍.

In order to write down the Price equation using vectors to represent categorical types, we
need to define the remaining two terms. Fortunately, they are as intuitive as the original defini-
tions. Let each 𝑧′

𝑖 be the vector whose values are all zero except for entries descended from the
𝑖th parent, whose values are the proportions descended from that parent. For example, a red ball
typically does not change colour of its own accord, so 𝑧′

1 = ⟨1, 0, 0⟩ which represents the fact
that every red ball stays red after selection regardless of whether it was picked (figure 3). On the
other hand, if half the red balls spontaneously turn green, the vector would be 𝑧′

1 = ⟨1
2 , 1

2 , 0⟩
(figure 4). Let 𝑝′

𝑖 be the population share of descendants of 𝑖. If only red balls are chosen, then
𝑝′
1 = 1. This is true whether or not they change colour. (As before, 𝑝′

𝑖 ignores information about
trait values, and 𝑧′

𝑖 ignores information about population share.)
Now 𝑝′

𝑖𝑧′
𝑖 is a vector describing the proportions of descendants of package 𝑖, weighted by

their population share in the subsequent population. And ∑𝑖 𝑝′
𝑖𝑧′

𝑖 is the vector describing the
new population: essentially, it sums all the non-green balls that turned green together with
the green balls that stayed green in order to get a total population share for green balls, and it
performs a corresponding sum for red and blue balls. The result is the population distribution
after selection, 𝑍′.

3.2. A Price Equation for Vectors

Having defined the key terms I’ll drop the subscripts for ease of reading. We just saw that ∑ 𝑝𝑧
is a vector describing the distribution of types in the population before selection and ∑ 𝑝′𝑧′ is
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Figure 3: Selection on a categorical trait. A shop contains equal numbers of red, green and blue balls. A
child selects only the red balls. There has been selection on colour, which can be represented by defining
each trait value 𝑧𝑖 as a one-hot vector.

Figure 4: Selection on a categorical trait with mutation. See the main text for a calculation of the two
terms of the categorical Price equation in this case.
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the equivalent vector after selection. Their difference is a vector describing the total change in
population proportions. This just is the left hand side of the Price equation, except that here the
weighted sums are distribution vectors rather than averages.

Does the Price derivation still work? Yes: assuming ∑ 𝑝′𝑧 is well-defined, the derivation is
perfectly valid. Do the derived terms still capture our pretheoretic distinction between change
due to selection and change due to other factors? Consider the selection term on a categorical
interpretation:

Δ𝑠𝑍 = ∑ 𝑝′𝑧 − ∑ 𝑝𝑧 (4)

Because each 𝑧 is a one-hot vector indexing its package, this describes how much the population
share of each package changes. When the child chooses the red balls:

Δ𝑠𝑍 = ∑ 𝑝′𝑧 − ∑ 𝑝𝑧

= 1 × ⎡⎢⎢
⎣

1
0
0

⎤⎥⎥
⎦

+ 0 × ⎡⎢⎢
⎣

0
1
0

⎤⎥⎥
⎦

+ 0 × ⎡⎢⎢
⎣

0
0
1

⎤⎥⎥
⎦

− ⎛⎜⎜⎜
⎝

1
3 × ⎡⎢⎢

⎣

1
0
0

⎤⎥⎥
⎦

+ 1
3 × ⎡⎢⎢

⎣

0
1
0

⎤⎥⎥
⎦

+ 1
3 × ⎡⎢⎢

⎣

0
0
1

⎤⎥⎥
⎦

⎞⎟⎟⎟
⎠

= ⎡⎢⎢
⎣

1
0
0

⎤⎥⎥
⎦

−
⎡⎢⎢
⎣

1
3
1
3
1
3

⎤⎥⎥
⎦

=
⎡⎢⎢
⎣

2
3

−1
3

−1
3

⎤⎥⎥
⎦

The resulting vector represents the fact that the red balls have increased their population share
by 2

3 , while the other two colours have each lost 1
3 . These gains and losses happened purely due

to selection (in this case the child’s choice of balls).
The transmission term works too:

Δ𝑡𝑍 = ∑ 𝑝′𝑧′ − ∑ 𝑝′𝑧 (5)

This says: imagine each package had reproduced perfectly (∑ 𝑝′𝑧), and look at how different
that is from what each of them actually did (∑ 𝑝′𝑧′). If half the red balls spontaneously turn
green (and the other balls retain their colours), this sum becomes:

Δ𝑡𝑍 = ∑ 𝑝′𝑧′ − ∑ 𝑝′𝑧

= 1 ×
⎡⎢⎢
⎣

1
2
1
2
0

⎤⎥⎥
⎦

+ 0 × ⎡⎢⎢
⎣

0
1
0

⎤⎥⎥
⎦

+ 0 × ⎡⎢⎢
⎣

0
0
1

⎤⎥⎥
⎦

− ⎛⎜⎜⎜
⎝
1 × ⎡⎢⎢

⎣

1
0
0

⎤⎥⎥
⎦

+ 0 × ⎡⎢⎢
⎣

0
1
0

⎤⎥⎥
⎦

+ 0 × ⎡⎢⎢
⎣

0
0
1

⎤⎥⎥
⎦

⎞⎟⎟⎟
⎠

=
⎡⎢⎢
⎣

1
2
1
2
0

⎤⎥⎥
⎦

− ⎡⎢⎢
⎣

1
0
0

⎤⎥⎥
⎦

=
⎡⎢⎢
⎣

−1
2

1
2
0

⎤⎥⎥
⎦
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The resulting vector represents the fact that red balls have lost a population share of 1
2 , and green

balls have gained an equivalent share, due to sources of change other than selection (see again
figure 4). The total change in this case is [2

3 , −1
3 , −1

3] + [−1
2 , 1

2 , 0] = [1
6 , 1

6 , −1
3]. Indeed, both

red and green balls have increased their population share by 1
6 (they initially had four out of

twelve, or one third of the population, and now have two out of four, or one half ) and blue balls
have decreased their population share by one third (they initially had four out of twelve and now
have zero). The categorical Price equation decomposition is depicted in figure 5.

Because the categorical equationmakes no assumptions beyond splitting the population into
different types, it can capture changes in distribution even when applied to numeric traits. As
long as the population can be segregated into discrete types, the categorical equation can be
applied. Discretization can be achieved by considering ranges of numeric variables; for example,
the height of an individual can be taken to fall into ranges of 1–1.1 metres, 1.1–1.2 metres,
and so on. Then any changes in the distribution of the population with respect to these discrete
categories will be represented by the categorical equation, regardless whether or not the overall
population average height changes. The question of which ranges to use is a modelling decision
that depends on the purposes to which the equation is being put in a particular case. The take-
home message is that the categorical equation is broad enough to apply to both categorical traits
and appropriately discretized numeric traits (the difference between categorical and numeric
traits is sometimes captured in terms of ‘levels of measurement’; see section 5.3 for further
discussion).

Vectors have been employed in the Price equation before. Lande andArnold (1983) explored
correlated selection between traits using a vector where each entry corresponds to a single nu-
meric trait. Their goal was to partition selective forces acting on a trait into direct effects (where
selection favours a trait because of some phenotypic effect it has) and indirect effects (where
selection favours a trait because it is correlated with another trait upon which selection is having
a direct effect). The resulting statistical apparatus has a further application: to capture complex
multi-trait fitness effects. For example, Brodie (1992) employed it to discover a correlation be-
tween the colour patterns and anti-predator behaviour of garter snakes. This is not due to an
accidental genetic correlation, but because the fitness of a garter snake’s phenotype is a complex
combination of both traits. It appears that non-striped snakes ought to perform an evasive be-
haviour called a ‘reversal’ while striped snakes should avoid doing so; the fitness function of each
trait is modulated by the trait value of the other.

Frank (2012b) and Frank and Godsoe (2020) also employ vectors as part of their exposi-
tion of the Price equation, but in that case the vector entries are different values of a particular
trait (corresponding to different individuals in the population) rather than different traits. There
might be connections with my one-hot approach; Frank often describes the vector 𝑧 as a “coor-
dinate system” that evolves in tandem with population proportions. I will have to leave a more
detailed comparison for another time.

I believe the foregoing constitutes a prima facie case for the usefulness of the categorical
form of the Price equation. Objections are discussed in section 5; before then, section 4 describes
further properties of the equation, in particular its application to multi-level selection.

4. Properties of the Categorical Price Equation

4.1. Multi-level Dynamics: Expanding the Selection Term

So far I’ve assumed packages have multiple individuals within them, all of which are the same
type. We can relax this assumption to start to understand how multi-level selection can be
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Figure 5: The categorical Price equation partitions change in population distribution Δ𝑍 into two parts:
change due to selection, and everything else.

represented in the framework. Multi-level selection concerns processes operating at hierarchical
levels, with a population of entities at a lower level belonging to discrete entities at a higher level.
Following Okasha (2006), we’ll call the lower-level entities particles and the higher-level entities
collectives.This will entail two different systems of packaging, with lower-level packages collected
into higher-level packages (figure 6). For the formal results below to hold, each particle must
belong to exactly one collective, hence each particle package must be nested within exactly one
collective package. Additionally the descendant package of a particle package must belong to
the corresponding descendant package of the collective package to which it belongs (as in figure
6).

Figure 6: Price’s framework applied to multi-level selection. Circles are particles. Dashed boxes are par-
ticle packages. Solid boxes are collective packages. As in the original framework, each initial package
corresponds to exactly one subsequent package after selection (shown by dashed arrows for particles and
solid arrows for collectives). In this example, there has been selection within collectives 1 and 3 (differ-
ent particles have different numbers of descendants) but not collective 2 (all particles have exactly two
descendants). There has also been selection between collectives, because each initial collective has the
same population share while the subsequent collectives have different population shares. The framework
requires that the population share of a collective be defined in terms of the number of particles it contains;
see the main text for discussion.
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Global index 𝑖 Local index 𝑘𝑗
1 11
2 12
3 13
4 21
5 22
6 23
7 31
8 32

Table 1: A population of eight particles has two indexing systems.The particles are divided into collectives,
with collectives 1 and 2 possessing three particles each and collective 3 possessing two particles.The global
index is the same as the normal package index, with one particle per package. The local index specifies
the collective 𝑘 to which the particle belongs, followed by its unique index within that collective 𝑗.

Building on previous work, Okasha (2006, §2) discusses two concepts of multi-level selec-
tion, corresponding to two kinds of fitness that can be attributed to collectives. In the first
concept, collective fitness is simply the average fitness of the individual particles within the
collective. Since particle fitness is defined in terms of number of offspring particles, this first
concept of collective fitness is a measure of the number of offspring particles produced by a col-
lective. In the second concept, collective fitness is the number of offspring collectives produced
by a collective. For the second concept to be distinct from the first, it must be possible to count
offspring collectives without weighting them by size (Okasha 2006, 54). However, as I am em-
ploying the Price framework, the one-to-one package assignment implies that the number of
offspring collectives of any collective is fixed at 1. The fitness of a collective is determined by its
present and future population share rather than its absolute offspring, and so the second con-
cept of collective fitness cannot be applied without it collapsing to the first. Future work could
investigate whether the framework can be expanded to recapture the distinction.

Turning to the question of multi-level selection, recall that the framework treats both par-
ticles and collectives as packages. By using two different packaging systems we find that the
selection term (equation (4)) of the categorical Price equation can be decomposed into parts
that describe selection between collectives and selection within collectives. This corresponds to the
decomposition discussed byOkasha (2006, §2.3.1), but does not require invoking numeric terms
like covariance or expectation. Let’s see how it works.

First we’ll index particles across the whole population with 𝑖. Recall that 𝑧𝑖 is a one-hot
vector picking out the category particle 𝑖 belongs to, and 𝑝𝑖 is the particle’s population share.
Now divide all the particles into 𝑘 collectives. Within each collective, particles are indexed with
the letter 𝑗. The collectives don’t need to be evenly sized. Each particle gets its unique global
index 𝑖, and its unique collective index 𝑘𝑗. Table 1 shows two sets of indices for a population of
eight particles arranged into three unevenly sized collectives.

Now we can define trait values and population shares according to the different indexing
schemes. First, since every particle has its one-hot vector describing its categorical trait value,
this is the same in both indexing schemes: 𝑧𝑖 = 𝑧𝑘𝑗. But the population share is not the same as
the particle’s collective share. 𝑝𝑖 says how much of the population is composed of this particle,
but 𝑝𝑘𝑗 only says how much of the local collective it makes up. I might be a small fish relative
to the ocean, but a large fish relative to my local pond. A particle’s global population share and
its local collective share can be related via the collective’s own population share: how much of
the population the entire collective takes up (how big the pond is relative to the ocean). We’ll
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denote this by 𝑃𝑘. Then a particle’s population share is a product of its collective share and the
collective’s population share. In other words, how well-represented I am in the population is
equal to how well-represented I am in my collective multiplied by how well-represented my
collective is in the population:

𝑝𝑖 = 𝑝𝑘𝑗𝑃𝑘

One more definition and then we can derive the multi-level result. A collective’s trait value, 𝑍𝑘,
is simply the vector describing the proportion of types that make it up. If it contains only one
type of particle it will be one-hot. But it might contain multiple types. Because the particles’
shares in the collective are constrained to sum to 1, the collective’s trait vector will be a list of
numbers that sum to 1. Each entry in the vector describes what proportion of particles of that
category are in the collective. The trait vector can therefore be defined as 𝑍𝑘 = ∑𝑗 𝑝𝑘𝑗𝑧𝑘𝑗.

Once these definitions are on the table, how can we distinguish selection within a collective
from selection between collectives? Noting that the selection term for particles in the whole
population, ∑𝑖 𝑝′

𝑖𝑧𝑖 − ∑𝑖 𝑝𝑖𝑧𝑖, can be written more concisely as ∑𝑖 𝑧𝑖 (𝑝′
𝑖 − 𝑝𝑖), here is an in-

teresting identity whose derivation can be found in the appendix:

Δ𝑠𝑍 = ∑
𝑖

𝑧𝑖 (𝑝′
𝑖 − 𝑝𝑖)

= ∑
𝑘

𝑍𝑘 (𝑃′
𝑘 − 𝑃𝑘)

⏟⏟⏟⏟⏟⏟⏟⏟⏟
Selection between

collectives

+ ∑
𝑘

𝑃′
𝑘 ∑

𝑗
𝑧𝑘𝑗 (𝑝′

𝑘𝑗 − 𝑝𝑘𝑗)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Weighted selection
within each collective

(6)

The easiest way to understand this equation is to think about the values of the component terms
in a few different situations. First, imagine the collectives are all homogeneous, each containing
exactly one type of particle (figure 7). Since all particles within a collective will have exactly the
same number of offspring, they will all have exactly the same collective share after selection. And
since they are the only particle type in that collective, this will be equal to their original collective
share. (There are three red balls and each splits into two; each originally had a collective share
of 1

3 and each of their descendants has a collective share of 2
6 = 1

3 .) Therefore 𝑝′
𝑘𝑗 = 𝑝𝑘𝑗 for

every particle in every collective, and the second term is zero. This makes perfect sense: when
collectives are homogeneous, the only selection that can take place is between collectives, and
so ∑𝑖 𝑧𝑖 (𝑝′

𝑖 − 𝑝𝑖) = ∑𝑘 𝑍𝑘 (𝑃′
𝑘 − 𝑃𝑘).

Now imagine that collectives all contain within them a microcosm of the whole population.
Say for example the population has three red, three green and three blue balls, and there are three
collectives with one of each type of ball (figure 8). There can be no selection between collectives
because they are all identical to each other. No matter the fitnesses of the particles within, each
collective’s population share after selection 𝑃′

𝑘 must be identical to its population share before
selection 𝑃𝑘. The first term is therefore zero, and all the selection takes place within each collec-
tive. In general there can be a mixture of selection effects between and within collectives (as in
figure 6); then both terms are non-zero.

These results have previously been derived for the numeric Price equation. They are exciting
regardless of whether the trait in question is numeric or categorical, because they display a
kind of self-similarity. The term describing selection between collectives has the same form as
the term describing selection across the entire population. We can therefore gather collectives
together into super-collectives, and further split equation (6) into three terms: one describing
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Figure 7: Multi-level selection with homogeneous collectives. There is between-collective selection be-
cause different collectives have the same initial population share but different subsequent population
shares. The first component of equation (6) is therefore a vector with some nonzero entries. There is no
within-collective selection since every particle within a given collective has the same number of offspring.
The second component of equation (6) is therefore a vector whose entries are all zero.

Figure 8: Multi-level selection where each collective is a microcosm of the population. There is no selec-
tion between collectives because each collective has equal population share before and after selection. The
first component of equation (6) is therefore a vector whose entries are all zero. There is selection within
each collective because the different particles’ descendants have different collective share within each
descendant collective. The second component of equation (6) is therefore a vector with some nonzero
entries.
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selection between super-collectives, one describing selection among first-order collectives within
super-collectives, and one describing selection among particles within a collective. As has been
noted for the numeric Price equation, there is no principled restriction on the number of levels
that can be represented.

4.2. Multi-level Dynamics: Decomposing the Transmission Term

Consider the Price equation at the collective level (omitting subscripts 𝑘):

∑ 𝑃′𝑍′ − ∑ 𝑃𝑍⏟⏟⏟⏟⏟⏟⏟⏟⏟
Total change at
collective level

= ∑ 𝑍 (𝑃′ − 𝑃)⏟⏟⏟⏟⏟⏟⏟
Selection at

collective level

+ ∑ 𝑃′ (𝑍′ − 𝑍)⏟⏟⏟⏟⏟⏟⏟
Transmission bias at

collective level

(7)

The transmission bias is the average across subsequent collectives, ∑𝑘 𝑃′
𝑘, of how the aggregate

trait changed within each collective, 𝑍′
𝑘 − 𝑍𝑘. But how the aggregate trait changed within each

collective is just the Price equation for particles within collectives:

𝑍′
𝑘 − 𝑍𝑘 = ∑

𝑗
𝑝′

𝑘𝑗𝑧′
𝑘𝑗 − ∑

𝑗
𝑝𝑘𝑗𝑧𝑘𝑗

= ∑
𝑗

𝑧𝑘𝑗 (𝑝′
𝑘𝑗 − 𝑝𝑘𝑗)

⏟⏟⏟⏟⏟⏟⏟⏟⏟
Particle selection
within collective 𝑘

+ ∑
𝑗

𝑝′
𝑘𝑗 (𝑧′

𝑘𝑗 − 𝑧𝑘𝑗)
⏟⏟⏟⏟⏟⏟⏟⏟⏟
Particle transmission bias

within collective 𝑘

(The equivalent decomposition for the numeric Price equation has been noted by Frank (1998,
15) and Bourrat (2021, 18) among others, and is alluded to by Okasha (2006, 70).) What this
means is that a hierarchy of self-similar equations appears, describing non-selective sources of
change at one level as a combination of selection and non-selective sources at the next level down.
This self-similarity continues until the trait value can no longer be appropriately described as an
aggregate of the trait values at a lower level. While a collection of coloured balls can be described
as having some proportion of red, green and blue balls, it’s not clear that a single red ball can
reasonably be described as having some proportion of coloured ball-parts. (Of course, if there
were some process by which portions of balls could change colour, it may well be appropriate to
represent them this way, and the decomposition would extend one level further.)

In sum, both the selection term and the transmission term display a kind of self-similarity.
The difference between them has to do with the direction in the hierarchy in which groupings
are considered. Starting from a certain hierarchical level, the selection term is self-similar when
we consider groupings above this level (by collecting packages into collectives, super-collectives,
and so on). The transmission term is self-similar when we consider groupings below this level
(by looking at each package and treating it as if it were its own population, with its own mini-
packages, subject to its own Price equation).

4.3. Migration

Because the categorical Price equation does not contain 𝑤𝑖, it is possible to consider packages
for which 𝑝𝑖 = 0. Of course, if both 𝑝𝑖 = 0 and 𝑝′

𝑖 = 0 then the component of the equation for
package 𝑖 is 0, representing a situation in which the package is not part of the population at all.
Since a modeller would simply not include such a package in their calculations, we can ignore
this case. A more interesting situation occurs when 𝑝𝑖 = 0 but 𝑝′

𝑖 > 0. This represents package 𝑖
migrating into the population: initially it was absent (had zero population share), subsequently
it is present and has nonzero population share.
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One might think a problem would arise when assigning a value to 𝑧𝑖 here. Supposing that
the migratory package in fact had a different trait value before it migrated versus after it arrived,
an accurate representation of the facts would attribute different values to 𝑧𝑖 and 𝑧′

𝑖. And this
would seem to entail overcounting change: the initial population does not contain the migratory
package at all, so it shouldn’t matter for the calculation of populational change what 𝑧𝑖 happened
to be. Happily, the fact that the original trait value of the migratory package shouldn’t matter
is reflected in the mathematics. Here’s what happens to component 𝑖 of the categorical Price
equation when we set 𝑝𝑖 = 0:

(Δ𝑍)𝑖 = 𝑧𝑖 (𝑝′
𝑖 − 𝑝𝑖) + 𝑝′

𝑖 (𝑧′
𝑖 − 𝑧𝑖)

= 𝑝′
𝑖𝑧𝑖 + 𝑝′

𝑖𝑧′
𝑖 − 𝑝′

𝑖𝑧𝑖
= 𝑝′

𝑖𝑧′
𝑖

The change to the population distribution 𝑍 caused by a migratory package falls squarely within
the transmission bias term. This is further motivation to interpret the term as ‘other sources of
change’; transmission bias being just one kind of non-selective change.10

5. Problems, Objections, Omissions

5.1. Are There Categorical Traits?

I’ve used colour as an example of a categorical trait, but one might wonder whether this is a
good idea, given that particular colours can be represented as a numeric combination of some
set of basis colours. For example, the red, green and blue shades I’ve been using can be assigned
numbers from the traditional RGB colour model. The red colour in my figures has an RGB
value of (234, 153, 153), the green is (182, 215, 168), and the blue is (159, 197, 232). These
colours could be represented using other ‘basis’ features too, with different numeric combina-
tions placing each in a region of the resultant space. Doesn’t this suggest that I am wrong to
complain about the lack of a categorical Price equation, if these traits are tacitly numeric after
all?

To respond, perhaps colour is not the best example of a categorical trait. A reviewer sug-
gested flavour instead. Suppose the child is choosing between flavours of ice cream: vanilla,
strawberry and chocolate (we may assume Neapolitan is unavailable). The change in flavour dis-
tribution from the vendor’s trays to the child’s cone reflects a selection process that implements
a flavour preference. The vector representation applies as before, and in this case there is no
familiar decomposition of flavours into a numeric flavour space.

10. Kerr and Godfrey-Smith (2009) present a different generalization of the Price equation that also allows mi-
gration to be represented. See section 5.4 for details of their approach and a potential extension of the categorical
framework in light of their results. It should also be noted that while the numeric Price equation can similarly
represent migration (by halting the derivation before substituting the covariance term), Price (1995) did not men-
tion migration in his wide-ranging discussion of the equation and its applications. I thus raise the issue here not
to claim a novel result, but to emphasise that the framework’s scope of application is broader than Price himself
perhaps realised.

 OPEN ACCESS - PTPBIO.ORG

http://ptpbio.org


MANN: PRICE EQUATION SINCE PRICE 20

However, there is a further worry that any putative categorical trait could be represented in a
numeric space of high enough dimension. Techniques developed in artificial intelligence to deal
with categorical data seem to reveal that any feature can in principle be placed into a numeric
space. For example, the semantic values of words can be extracted from huge text corpora by
placing each word into a position in a high-dimensional ‘semantic space’. Nearby words have
similar semantic contents, while operations on numeric vectors sometimes yield surprisingly
consistent relationships, such as ‘king - man + woman = queen’. Perhaps even flavours could
be represented this way, if the appropriate bases were found for a space of sufficiently high
dimension. If seemingly categorical traits can be placed into numeric spaces, this undercuts the
motivation for seeking a categorical Price equation in the first place.

To respond to this further worry, it is of course true that some traits which at first seem
categorical can be represented in high-dimensional numeric spaces. Let’s concede, for the sake
of argument, that any categorical trait can be represented within such a space. Then one could
apply a version of the Price equation with high-dimensional numeric vectors, rather than (or in
addition to) the categorical one-hot vectors I’ve been advocating. As has already been shown,
the equation is perfectly well-defined in this case: its derivation does not make any assumptions
about what form 𝑧 takes, only that it obey a few basic algebraic rules. Just as 𝑧 can be a number
or a one-hot vector, it can be a vector of any kind. What happens in this case is that ∑ 𝑝𝑧 is still
a vector, but each of its entries is the average value of the entries for each of the individuals in
the population. In other words, for a population of red, green and blue balls represented within
a three-dimensional RGB space, the population vector will define a point in that space which
takes the average value of the R component (continuing the example, this would be 192), the
average value of the G component (188), and the average value of the B component (184). The
result is a rather uninteresting light grey. Supposing that after selection we are left with red balls
only, the average RGB value of the subsequent population is just the red balls’ RGB value. The
Price equation tells us that we have moved from a light grey to a red. This information could well
be useful depending on the purposes we want to put the Price equation to; similarly, we might
get use from this multidimensional numeric Price equation with respect to any categorical trait
once it is represented in high dimensional space.

The question is whether this is the only correct or useful application of the Price equation. If
the objection is that categorical traits can be represented this way, it doesn’t harm my main point,
because categorical traits can also be represented as one-hot vectors. The question the theorist
should ask is not “which is the uniquely correct representation?”, because both are available;
instead, the question is “which representation is most useful for my purposes?” My contention
is that we can always apply the categorical version of the Price equation – should we have rea-
son to – in order to see how population distributions change. We can apply it to seemingly
categorical traits regardless of whether they have a high-dimensional numeric representation,
and we can apply it to traits that are obviously numeric, by ignoring magnitude relationships
between numbers and discretizing the population into unique categories (as described in section
3.2). We can always ask about a change in distribution rather than a change in average numeric
value. All of these points remain true regardless of whether the premise of the objection holds;
that is, whether or not it turns out that every seemingly categorical trait can be represented in a
high-dimensional numeric space.

5.2. Are One-Hot Vectors Really Better than Dummy Coding?

By stacking 1s and 0s into vectors, one might object, I have done nothing more than repackage
the dummy coding approach. Recall that dummy coding treats each categorical variable as a
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collection of binary variables. Instead of the variable ‘colour’ with values red, green and blue, we
have three variables ‘red’, ‘green’ and ‘blue’, each with values 1 and 0. Each individual has a value
of either 1 or 0 for each of the three dummy variables depending on its colour. Rewriting the
example of red balls being selected using dummy coding reveals three Price equations. I argued
that the vector approach is preferable because it captures the changes in population distribution
in a single equation. But it turns out that the vector equation simply stacks the three dummy
equations on top of each other. The vector components correspond to the trait values red, green
and blue, and the numbers that appear in each of these slots are exactly the numbers that appear
in the corresponding dummy equations for the ‘red’, ‘green’ and ‘blue’ dummy variables.

Furthermore, as a reviewer suggested, the dummy coding approach captures the fact that
the covariance between a trait value and fitness exactly measures the change due to selection
of that trait in the population. One might think it is the equality between the covariance term
and the change due to selection that is most notable about Price’s discovery, rather than the
algebraic rearrangement of terms (see also footnote 9 above). Since the categorical equation is
obtained by merely rearranging terms, and since it does not capture the correspondence between
covariance with fitness and change due to selection, it seems as though the equation loses what
is most insightful about the Price equation. Given these facts, by what right do I claim the vector
approach as superior, when it is little more than a repackaging of the dummy coding approach?

I am willing to concede that the vector representation of categorical variables is a relatively
slight change from the dummy coding approach. Yet it is an extension that builds positively
upon existing work. For one thing, it is aesthetically pleasing to employ a single equation with
N-dimensional vectors rather than N equations. The population of balls does not, as a matter of
fact, harbour three overlapping traits: it has a single trait with three values. The dummy coding
approachmisses that fact, while the vector approach captures it explicitly. As a result, the dummy
coding approach doesn’t allow explicit representation of the constraint that individuals can only
have one value of a particular categorical variable. Using one-hot vectors to represent individuals
embodies this constraint.

Another reason to prefer the vector representation is that it allows us to access geometric
properties of populations. In the numeric multivariate case discussed earlier in this section, rep-
resenting traits as vectors would allow us to measure the distance between individuals in the
resulting multidimensional space. Various measures can be employed in multidimensional set-
tings to describe the distance between two composite colours in RGB space, for example the
Euclidean distance. Distinguishing the individual dimensions – decomposing the vector into
component parts – misses the structure of the overall space. These distances may or may not be
theoretically important for future applications, but I contend we should at least keep them in
play rather than neglecting them without cause. Since categorical traits are an extreme case of
multidimensional representation (one in which each individual lies exclusively on an axis of the
space, hence is picked out by a one-hot vector), for mathematical consistency it is appropriate
to use vectors when representing them.

Finally, emphasising that selection changes population distributions, not just trait value av-
erages, prompts us to think more broadly about the Price equation’s application. The fact that
the interesting properties described in section 4 still hold should be sufficient to warrant further
interest. While the categorical equation loses the relationship with covariance, fitness is still
what is causing trait distribution changes due to selection. It is just that, in my presentation,
covariance has been dethroned as the ultimate expression of that change. To those who take
Price’s key insight to be the covariance term, it may seem that something has been lost in my
formulation. I think that what has been lost needed to be lost in order to capture the general
case. Selection does not just change averages, it changes distributions.
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Level of measurement

Categorical Ordinal Interval Ratio

Equation

Categorical Yes Yes Yes Yes

Ordinal? No Yes Yes Yes

Numeric No No Yes Yes

Ratio? No No No Yes

Table 2: Levels of measurement to which the categorical and numeric versions of the Price equation apply.
It is an open question whether there are further versions of the equation, one that applies at the ordinal
level and below, and one that applies solely at the ratio level.

5.3. Levels of Measurement

A reviewer suggested applying this treatment to different levels of measurement. ‘Levels of
measurement’ here refers to a four-way distinction between types of variable: categorical (also
called nominal), ordinal, interval, and ratio. Categorical variables distinguish categories into
which a value can fall, but do not have any numerical meaning.Ordinal variables define a ranking
scale on which values can be higher or lower, but do not assume consistent distances between
the rankings. So for example the finishing positions in a race can be represented by an ordinal
variable: 1st place finished before 2nd and 2nd finished before 3rd, but the time discrepancies
between the finishers might be radically different and these discrepancies are not captured by the
variable. Interval variables do capture differences between their values. Temperaturemeasured in
degrees Celsius is an interval variable because the difference between 20 degrees and 30 degrees
is in some sense the same as the difference between 30 degrees and 40 degrees. However, interval
variables do not enable comparisons in terms of ratios: it does not make sense to say 40 degrees is
twice as hot as 20 degrees, because the location of zero is arbitrary on this scale. Ratio variables
are those for which both numeric differences and ratios are meaningful. Height is a ratio variable
because it makes sense to say that one person is twice as tall as another. What I have been calling
‘numeric’ subsumes the interval and ratio categories.

We now have versions of the Price equation describing change in population properties re-
lating to two out of these four levels (table 2). The numeric Price equation describes changes in
population average. Because both interval and ratio variables have meaningful averages, the orig-
inal Price equation applies to any variable of those two kinds. The version of the Price equation
introduced in this paper describes changes in population distributions with respect to categori-
cal variables. It applies to any categorical variable that can be defined over a population. Because
each level of measurement has the same properties as those of the levels above, each Price equa-
tion applies to variables at its level and all levels below. So the numeric equation applies at the
interval level and below (encompassing the ratio level), and the categorical equation applies at
the categorical level and below (encompassing the ordinal, interval, and ratio levels).

Are there versions of the Price equation that apply at the ordinal level and the ratio level –
do the italicised rows of table 2 correspond to genuine options? For the answer to be yes, there
must be a variable 𝑧 of the relevant kind (i.e. ordinal; ratio) for which a legitimate population-
level property 𝑍 = Σ𝑝𝑧 can be defined. To my mind there is no particular reason why such traits
must exist. The levels of measurement are a convenient categorisation for statisticians who need
to distinguish variable types for the purposes of applying appropriate statistical tests. There is no
guarantee that this four-way distinction will deliver four unique types of trait 𝑧 that each define
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a meaningful population property 𝑍 = Σ𝑝𝑧. For ordinal data in particular it seems unlikely that
Σ𝑝𝑧 could be meaningful. Even if 𝑝 could be defined, the average would tend to be a number
somewhere in between the ordinal values. Such a number would be meaningless on an ordinal
scale, because there is no guarantee that the differences between ordinal values are the same.
Obtaining a value of 2.5 could entail something wildly different about where between 2 and 3
this value lies, compared to a value of 3.5 and what that entails about where between 3 and 4
the value lies. For this reason statisticians working with ordinal data tend to employ the median
rather than the mean. Sometimes a weighted median is employed. But the median of an ordinal
dataset, whether weighted or not, cannot be written as Σ𝑝𝑧. Changes in the median cannot be
captured by a Price equation.11

In sum, while there might be a role for other versions of the Price equation that apply at
different levels of measurement, it seems to me unlikely that there will be a proprietary equation
for the ordinal level. I leave the question of the ratio level to future work.

5.4. Multi-parental Inheritance and Neighbour-Modulated Fitness

There are of course a great deal more processes relevant to evolutionary theory than have been
discussed here. I have omitted discussion of random drift entirely.12 Another significant process
is multi-parental inheritance. To represent multi-parental inheritance we must either avoid the
assumption that each descendant particle is associated with exactly one ancestor, or treat individ-
uals as comprised of multiple particles. The latter would allow us to decompose each individual
into a collection of discrete particles, each of which derives from a unique ancestor particle.
This might be what Price (1995, 393 fig. 5) had in mind when he applied his framework to
genetic selection, and it might even be warranted in that case. However, it’s not clear that such
an approach will be sufficiently general if the goal is (as I take it to be) carving out a concept of
selection that plays the same role in every possible evolutionary system. It seems as though there
can be selection in cases where particles have multiple parents, and cannot obviously be broken
down into particles on a lower level, all of which necessarily have a unique parent particle.

The question of multiparental inheritance has been tackled by Kerr and Godfrey-Smith
(2009). They introduce formalism explicitly describing which particles in the initial and subse-
quent population are connected to each other. Representing connections allows for particles in
the initial population that are not connected to any in the subsequent population (correspond-
ing to extinction) and particles in the subsequent population that are not connected to any in
the initial population (corresponding to migration). Because multiple connections are allowed,
multiparental relationships can be represented. In this sense, Kerr & Godfrey-Smith’s approach
encompasses a broader set of cases than I have considered. However, they retain the traditional
focus on numeric traits, such that a descendant inherits the average trait value of its parents.
Thinking about how their connectionist approach could be employed to represent multiparental
inheritance of categorical traits, clearly the key question is how exactly the trait can be said to
be ‘inherited’ from multiple parents if it is supposed to be categorical. There are several possi-
bilities here. In some systems the child might inherit a blend of the two traits, while in others
it might inherit one trait probabilistically depending on the strength of the connection. These
considerations may be especially relevant in cultural evolution settings, where any individual
in a population can in principle inherit a cultural trait from any other individual with whom

11. Frank and Godsoe (2020, 2) suggest that the median can be written in this form, but they appear to be
referring to either interval or ratio variables rather than ordinal.
12. The effects of drift can appear in either of the two terms of the Price equation, depending on the cause of

drift in the case in question. Thanks to an anonymous reviewer for pointing this out.
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it socially interacts. Future work should investigate prospects for representing categorical traits
using a connection-based approach.

The second huge topic not yet addressed is neighbour-modulated fitness. No account of
selection is going to be complete unless it takes into account the contextual effects of nearby
particles on the future population share of a focal particle. The most obvious biological appli-
cation of this phenomenon is social behaviour (Gardner, West, and Wild 2011), but even the
simplest cases demonstrate neighbour-modulated fitness: whether an apple is chosen by the
shopper may depend on whether it is the best apple in the shop, which in turn depends on the
trait values of the other apples. Some of the questions that arise here, but by no means all, can
be answered by reference to the multi-level approach (Gardner 2015). Future work should draw
on existing approaches to understand how selection operates on categorical traits when fitness
is affected by a particle’s neighbours.

6. Recapitulation

George Price introduced a deceptively simple framework with deep significance for theoretical
biology and beyond. Starting with basic definitions of package, trait value, and population share,
Price derived an equation which describes how the population average value of a trait changes
due to selection and other factors. The insight at the heart of this result is often taken to be the
quantification of selection as the covariance between trait value and fitness. However, this step of
the derivation requires that the trait value in question be numeric. I have argued that the Price
equation need not be restricted to traits that can be represented numerically. A conceptually
satisfactory version of the equation can be derived, making essentially the same assumptions,
by treating the trait which is subject to change as categorical. This is done by using one-hot
vectors to represent categorical traits, and treating weighted sums as population distributions
rather than averages. Phenomena relevant to questions of populational change, such as multi-
level selection and migration, can be represented in the resulting framework. There is a great
deal of work left to do.
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Appendix

Derivation of the Multi-level Selection Equation

This derivation is based on a suggestion from Wade (1985, 63). The selection term with particles
indexed across the whole population is:

Δ𝑠𝑍 = ∑
𝑖

𝑧𝑖 (𝑝′
𝑖 − 𝑝𝑖)

Instead of counting particles across the population, we want to segregate them into 𝑘 collectives.
Within each collective, particles are indexed by 𝑗. Since 𝑃𝑘 is the population share of collective
𝑘, it follows that 𝑝𝑖 = 𝑝𝑘𝑗𝑃𝑘. Similarly, 𝑝′

𝑖 = 𝑝′
𝑘𝑗𝑃′

𝑘. Trait values stay the same regardless of
indexing, so 𝑧𝑖 = 𝑧𝑘𝑗. The selection term therefore becomes:

Δ𝑠𝑍 = ∑
𝑘

∑
𝑗

𝑧𝑘𝑗 (𝑝′
𝑘𝑗𝑃′

𝑘 − 𝑝𝑘𝑗𝑃𝑘)

From here onwards we will remove the subscripts for ease of reading. Every upper-case letter
can be considered to have the subscript 𝑘, and every lower-case letter can be considered to have
the subscript 𝑘𝑗. We can rearrange terms to get the following:

Δ𝑠𝑍 = ∑
𝑘

∑
𝑗

𝑧𝑝′𝑃′ − ∑
𝑘

∑
𝑗

𝑧𝑝𝑃

= ∑
𝑘

𝑃′ ∑
𝑗

𝑧𝑝′ − ∑
𝑘

𝑃 ∑
𝑗

𝑧𝑝

At this point we make a similar move as in the original Price equation derivation, by adding and
subtracting identical terms:

Δ𝑠𝑍 = ∑
𝑘

𝑃′ ∑
𝑗

𝑧𝑝′ − ∑
𝑘

𝑃 ∑
𝑗

𝑧𝑝 + ∑
𝑘

𝑃′𝑍 − ∑
𝑘

𝑃′𝑍

We can restate some of these terms, switching between expressions pertaining to particles and
expressions pertaining to collectives:

Δ𝑠𝑍 = ∑
𝑘

𝑃′ ∑
𝑗

𝑧𝑝′ − ∑
𝑘

𝑃𝑍 + ∑
𝑘

𝑃′𝑍 − ∑
𝑘

𝑃′∑
𝑗

𝑧𝑝

Then, as in the derivation of the original Price equation, we put like terms together:

Δ𝑠𝑍 = ⎛⎜
⎝

∑
𝑘

𝑃′𝑍 − ∑
𝑘

𝑃𝑍⎞⎟
⎠

+ ⎛⎜⎜
⎝

∑
𝑘

𝑃′ ∑
𝑗

𝑧𝑝′ − ∑
𝑘

𝑃′ ∑
𝑗

𝑧𝑝⎞⎟⎟
⎠

= ∑
𝑘

(𝑃′𝑍 − 𝑃𝑍) + ∑
𝑘

𝑃′ ∑
𝑗

(𝑧𝑝′ − 𝑧𝑝)

And the equation as reported in the text appears when we do some factoring (with the subscripts
explicitly included):
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Δ𝑠𝑍 = ∑
𝑘

𝑍𝑘 (𝑃′
𝑘 − 𝑃𝑘)

⏟⏟⏟⏟⏟⏟⏟⏟⏟
Selection between

collectives

+ ∑
𝑘

𝑃′
𝑘 ∑

𝑗
𝑧𝑘𝑗 (𝑝′

𝑘𝑗 − 𝑝𝑘𝑗)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Weighted selection
within each collective

Glossary

Indices

• 𝑖: Index for counting packages; index for counting particles in the whole population

• 𝑗: Index for counting particles within a collective

• 𝑘: Index for counting collectives

Basic terms

• 𝑝𝑖: population share of package 𝑖 in the initial population. Constrained so that ∑𝑖 𝑝𝑖 = 1

• 𝑧𝑖: trait value of package 𝑖 in the initial population

• 𝑝′
𝑖: population share of descendants of package 𝑖 in the subsequent population. Con-

strained so that ∑𝑖 𝑝′
𝑖 = 1

• 𝑧′
𝑖: average trait value of descendants of package 𝑖 in the subsequent population

Derived terms

• 𝑤𝑖: selection coefficient of package 𝑖. Defined as 𝑝′
𝑖

𝑝𝑖

• 𝑧: Average trait value in the initial population. Defined as ∑𝑖 𝑝𝑖𝑧𝑖

• 𝑧′: Average trait value in the subsequent population. Defined as ∑𝑖 𝑝′
𝑖𝑧′

𝑖

• Δ𝑧: Change in average trait value. Defined as 𝑧′ − 𝑧

• Δ𝑠𝑧: Change in average trait value due to selection

• Δ𝑡𝑧: Change in average trait value due to factors other than selection

Statistical terms

• 𝑊: Selection coefficient considered as a random variable

• 𝑍: Trait value considered as a random variable

Vector terms

• 𝑧𝑖: Categorical trait for type 𝑖, represented as a one-hot vector

• 𝑍: Population distribution of categorical traits before selection. Defined as ∑𝑖 𝑝𝑖𝑧𝑖

• 𝑧′
𝑖: Distribution of trait values over type 𝑖’s descendants after selection

• 𝑍′: Population distribution of categorical traits after selection. Defined as ∑𝑖 𝑝′
𝑖𝑧′

𝑖
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Multi-level terms

• 𝑝𝑖: Population share of particle 𝑖. Constrained so that ∑𝑖 𝑝𝑖 = 1

• 𝑝𝑘𝑗: Collective share of particle 𝑗 in collective 𝑘. Constrained so that ∑𝑗 𝑝𝑘𝑗 = 1 for all 𝑘

• 𝑧𝑖: Trait value of particle 𝑖. Equal to 𝑧𝑘𝑗 when 𝑖 and 𝑘𝑗 index the same particle

• 𝑧𝑘𝑗: Trait value of particle 𝑗 in collective 𝑘. Equal to 𝑧𝑖 when 𝑖 and 𝑘𝑗 index the same
particle

• 𝑃𝑘: Population share of collective 𝑘. Defined as the sum of the population shares of its
constituent particles

• 𝑍𝑘: The trait value associated with collective 𝑘. Defined as ∑𝑗 𝑝𝑘𝑗𝑧𝑘𝑗. In categorical set-
tings it is a vector describing the proportions of different particle types in collective 𝑘

• 𝑃′
𝑘: Population share of descendant collective of collective 𝑘. Defined as the sum of the

population shares of its constituent particles

• 𝑍′
𝑘: Trait value associated with descendant collective of collective 𝑘. Defined as ∑𝑗 𝑝′

𝑘𝑗𝑧′
𝑘𝑗.

In categorical settings it is a vector describing the proportions of different particle types
in the descendant of collective 𝑘
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