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Abstract
Over the last fifteen years, an ambitious explanatory framework has been proposed 
to unify explanations across biology and cognitive science. Active inference, whose 
most famous tenet is the free energy principle, has inspired excitement and confu-
sion in equal measure. Here, we lay the ground for proper critical analysis of active 
inference, in three ways. First, we give simplified versions of its core mathematical 
models. Second, we outline the historical development of active inference and its 
relationship to other theoretical approaches. Third, we describe three different kinds 
of claim—labelled mathematical, empirical and general—routinely made by propo-
nents of the framework, and suggest dialectical links between them. Overall, we aim 
to increase philosophical understanding of active inference so that it may be more 
readily evaluated. This paper is the Introduction to the Topical Collection “The Free 
Energy Principle: From Biology to Cognition”.

Keywords  Free energy principle · Active inference · Models · Computational 
cognitive science

Overview

Over the past fifteen years, a novel explanatory framework spearheaded by Karl 
Friston has inspired both excitement and confusion in the philosophy of biology and 
cognitive science. Active inference, whose most famous tenet is the free energy 
principle, purports to unify explanations in biology and cognitive science under 
a single class of mathematical models. Unfortunately, the framework is notori-
ously difficult to understand, hampering efforts at critical evaluation. The Topical 
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Collection aims to widen the field for proper assessment of active inference, and this 
introduction provides a jumping-off point.

There are broadly three reasons why the active inference framework is difficult to 
understand. First, the mathematics are unfamiliar to many philosophers, and even to 
biologists and cognitive scientists. Second, the framework was developed rapidly by 
a small but dedicated group of researchers, limiting its accessibility while expanding 
its scope. Third, the framework makes claims across both mathematical and empiri-
cal domains, and the dialectical relationships between these are unclear.

Here we attempt to redress the situation by targeting each source of potential 
confusion. First, we offer simplified versions of the models used in active inference 
(“Simple models of the free energy principle for inference, action, and selection” 
section). Second, we describe the historical trajectory of the framework and high-
light its novel features (“A brief history of the free energy principle” section). Third, 
we distinguish three kinds of claim (labelled mathematical, empirical, and general) 
that proponents of active inference make (“Dialectic: the free energy principle and 
related claims” section). We illustrate the ways these kinds of claim are used to jus-
tify one another with reference to papers in the Topical Collection.

Our goal is neither to defend nor attack active inference, but to enable philoso-
phers to pursue more effective critical evaluation. A wider and deeper understanding 
of the framework is required if it is to be given a proper hearing.

Simple models of the free energy principle for inference, action, 
and selection

A note on ‘models’

Let us begin with a warning. The word ‘model’ takes on two distinct senses through-
out our discussion. The sense more familiar to philosophers is what we will call a 
scientific model: a representation of some possible or actual system, which a scien-
tist uses to reason about, or discover features of, that system and related systems. By 
contrast, in the active inference literature a narrower sense is typically meant; what 
we will call a generative model. This is a mathematical object with applications in 
statistics and various sciences. Our simplified models of the free energy principle 
are scientific models. They in turn posit generative models, possessed by agents and 
employed by them to perform inference and action.

Note further that some scholars opt for a deflationary stance on generative mod-
els, using them only to describe the dynamics of agents. It is an open question 
whether this kind of model building precludes any form of scientific realism about 
the relation between the model and the target system. These issues are discussed in 
“Dialectic: the free energy principle and related claims” section.

In each of our scientific models, the generative model in question takes the form 
of a joint probability distribution like p(w, x) or p(w, x, z) . If we use the term ‘model’ 
in isolation, context will be sufficient to indicate which sense is intended.
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A simple model of inference

The inference problem addressed by the active inference framework concerns an 
agent who can observe data x and must infer the value of an unobservable state 
w . The unobservable state is assumed to cause observable data (Fig. 1). The agent 
is capable of harbouring beliefs about the unobservable state, and knows the sta-
tistical relationship between it and the observable data, which is represented as a 
joint probability distribution p(w, x).

For example, imagine you have a cat that spends its time in either the kitchen 
or the bedroom. When it’s in the kitchen, it often meows for food; when it’s in the 
bedroom, it often purrs contentedly. Suppose you tally the proportion of the times 
your cat is in each place and making each noise. The results might look some-
thing like this:

The table describes a joint probability distribution p(w, x) , where w ranges over pos-
sible cat locations: w ∈ {kitchen, bedroom} , and x ranges over possible cat sounds: 
x ∈ {meow, purr}. You can see that 40% of the time the cat is in the kitchen and 
meowing, and 30% of the time it is in the bedroom and purring. It does sometimes 
mix and match those locations and noises—sometimes it purrs in the kitchen or 
meows in the bedroom—but less frequently. (We are assuming that the cat cannot 
be anywhere but the kitchen or the bedroom, that it cannot make sounds other than 
meowing or purring, and that it is always making one of these sounds.)

Now suppose you are in the living room and you hear a meow. You can’t tell 
whether the sound came from the kitchen or bedroom, but you do know the sta-
tistics given in the table above. What is the probability of the cat being in one 
location or the other, given that you heard it meowing? This is an inference 
problem. We will say that you must give your solution in the form of a probability 
distribution, which we denote by q(w) . This can be said to capture your degrees of 
belief—what philosophers sometimes call ‘credences’—in the two possible loca-
tions of the cat.

Of course, there is a sense in which you already possess a distribution of this 
kind. The joint distribution that is your generative model, p(w, x) , implies a distri-
bution p(w) . But these are your prior credences, the probabilities you implicitly 
assign before you hear the cat make a sound. We are asking what probabilities 

Cat noise

meow purr

Cat location
kitchen

bedroom

(
40% 20%

10% 30%

)

Fig. 1   The basic model of inference. An agent can observe x and must infer the value of w . The agent 
knows the statistical connection between them, encapsulated by the joint probability distribution p(w, x)
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you should assign—what your credences, represented by q(w) , should be—after 
hearing a meow.

Many philosophers will be familiar with one famous method for solving this 
problem: Bayesian conditionalization. This method can be stated as a principle 
saying how an agent using a model p(w, x) ought to choose their beliefs q(w) upon 
observing data x:

Bayesian Principle: q(w) ←� p(w|x)

The left-pointing arrow ←�  means, ‘set the value of the thing on the left to the 
value of the thing on the right.’ So this statement says, ‘set the value of q(w) 
equal to the value of p(w|x) ’. We have called this rule Bayesian Principle because 
p(w|x) , which is called the posterior, is calculated via Bayes’ theorem:

Since the numerator is equal to the joint probability, and the denominator is its mar-
ginal distribution, we can rewrite (1) in terms of what the agent already knows:

Following Bayesian Principle, the solution to the cat example is as follows:

Upon hearing a meow, according to Bayesian Principle, you should have 80% cre-
dence that the cat is in the kitchen and 20% credence that it is in the bedroom.

(1)p(w|x) = p(x|w)p(w)
p(x)

p(w�x) = p(x�w)p(w)
p(x)

=
p(w, x)

∑
w p(w, x)

q(kitchen) = p(kitchen�meowing)

=
p(kitchen,meowing)
∑

w p(w, meowing)

=

4

10

4

10
+

1

10

=
4

5

q(bedroom) = p(bedroom�meowing)

=
p(bedroom,meowing)
∑

w p(w, meowing)

=

1

10

4

10
+

1

10

=
1

5
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It is worth noting that following Bayesian Principle is much simpler than the 
Bayesian statistical practices performed by many scientists. Usually the scientist 
aims to improve the accuracy of a generative model of some real-world phenom-
enon, which would mean improving the accuracy of p(w, x).1 This learning task is 
relatively difficult. It should be distinguished from the simpler task of estimating w 
from an observation of x , which is called inference. In the present example we are 
assuming for simplicity that the agent’s generative model is already accurate. We 
return to this point in “Extensions to the models: more things to learn, more waysto 
act” section.

The formalism at the heart of active inference begins with the observation that it 
is sometimes impossible to follow Bayesian Principle. In many of the situations in 
which statisticians would like to find p(w|x) , the sum 

∑
w p(w, x) is computationally 

intractable so p(x) cannot be calculated. This usually happens when the state space 
is continuous rather than discrete, so the sum 

∑
 becomes an integral ∫  over an infi-

nite number of points.
In these cases, what is needed instead is a way to choose q(w) so as to make it 

close to p(w|x) . Even if you cannot formulate the true posterior, you will end up with 
a distribution that is optimal given the computational resources at your disposal.

When this problem is formulated by statisticians, we usually begin with a set of 
possible distributions q, and search for the member of that set which lies as close 
to p(w|x) as possible. We can do this indirectly by using a measure of inaccuracy. 
Active inference employs a measure of inaccuracy called variational free energy, 
labelled F. Because it is a measure of inaccuracy, smaller values are better than 
larger values. Given a set of candidate distributions q, the best is the one that pro-
duces the lowest value of F. Although the lowest possible value of F is given by the 
true posterior p(w|x) , that might not be one of the available distributions q. In that 
case, the optimal q is the member of the set that yields the lowest value of F from 
among the available members.

In short, according to active inference, the goal of inference is to adopt credences 
q that minimize variational free energy F. We will now build up to the definition of 
F by giving an intuitive overview of its component parts.

Variational free energy captures two sources of inaccuracy in belief and dictates 
how they ought to be traded off against one another. The two sources of inaccu-
racy are overfitting and failing to explain the data. We will introduce them in turn 
before displaying the full definition of F, then showing how it can provide the same 
solution to the cat problem as the simpler Bayesian Principle.

Overfitting. According to lexico.com (2021), overfitting is “The production of an 
analysis which corresponds too closely or exactly to a particular set of data, and may 
therefore fail to fit additional data or predict future observations reliably.” In the cat 
example, the prior p(w) implied by the generative model captures general statistics 

1  In this case the scientist is employing a generative model as a scientific model. McElreath (2020, p. 
62) points out that all Bayesian models are generative, and many non-Bayesian models are too.
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about the cat’s location,2 while q(w) is your ‘analysis’; that is, your belief about its 
current location. You overfit when you choose a distribution q(w) that explains the 
current data very well, but fails to account for the wider range of statistical possi-
bilities encapsulated by p(w) . The cost of overfitting can therefore be measured by 
checking how far q(w) diverges from p(w) . The first term of F is a measure of this 
kind:

This term, which is also called relative entropy or Kullback-Leibler divergence, 
measures how far a distribution q(w) differs from a distribution p(w).3 When q and p 
are identical, they coincide for every value of the sum. In this case the logarithm is 
always zero (because log a

a
= 0 ) so the total value of the sum is zero. As q and p get 

more and more different, the total value of the term increases. To avoid overfitting, 
q(w) should be close to p(w).

Failing to explain the data. Mathematically, ‘explaining the data’ means assign-
ing high probability to events w that make the probability of x high. The penalty for 
failing to explain data is captured by the second term of F:

Higher values of p(x|w) should be matched with high values of q(w) to keep this 
term low.

Variational free energy F is the sum of the penalties for overfitting and failing to 
explain the data:

Suppose you happen to choose beliefs q(w) that are identical to p(w) . Then the first 
term is zero, but the second term may be inordinately high. You have avoided over-
fitting at the expense of failing to explain the data. On the other hand, suppose you 
happen to choose q(w) such that its high values correspond to high values of p(x|w) . 

(2)
∑

w

q(w) log
q(w)

p(w)

(3)
∑

w

q(w) log
1

p(x|w)

(4)

F(p, q, x) =
∑

w

q(w) log
q(w)

p(w)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Penalty for overfitting

+
∑

w

q(w) log
1

p(x|w)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Penalty for failing

to explain the data

3  Note that the base of the logarithm in Eq. (2) is not important for our exposition. Changing the base 
changes the units in which the result is given, from (say) bits (when the base is 2) to nats (when the base 
is Euler’s number e, so the logarithm is the natural logarithm ln ). Beyond describing F as a measure of 
inaccuracy, however, we do not have space to relate its interpretation to other quantities associated with 
those terms. Here we leave the base unspecified; in the solution to the cat problem below we chose e 
which entails that F and its component penalties are measured in nats.

2  Again, for simplicity we are assuming your generative model accurately captures the ‘true’ statistical 
facts. Realistically, the prior and the generative model it is derived from can only be informed by the 
samples you have managed to take. If there is a true, objective distribution, this may differ from the gen-
erative model. See “Extensions to the models: more things to learn, more waysto act” section for more.
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Then the second term remains low, but the first term may be high as a result. Your 
beliefs explain the data well at the expense of overfitting. The optimal value of F 
occurs when q(w) lies between these two extremes.4 In a moment we will see how 
this works in the solution to the cat example. But first we should address a practical 
issue with Eq. (4).

We set up the inference problem by saying that the agent knows the statistics 
p(w, x) , but might not have access to the marginal distribution p(x) . The agent was 
prohibited from following Bayesian Principle for this reason. However, we did not 
address whether the agent has access to the prior p(w) or the likelihood p(x|w) . 
Since F includes both those terms, one would expect the agent needs them in order 
to use F to guide inference. As it turns out, the agent does not need access to the 
prior or the likelihood, because (4) simplifies to:

Given our assumptions so far, the agent has access to all three inputs to F in Eq. (5):

•	 p: A joint distribution over w and x . The agent’s generative model and, in this 
simple example, also the true general statistical connection between w and x.

•	 q: A distribution over w . The agent’s credences about the unobservable state, in 
light of observing a specific piece of data x.

•	 x : A value of a random variable. The specific piece of data the agent has just 
observed.

The inference problem is posed in the following way: given p and x , what should q 
be? Considering F as a measure of the inaccuracy of belief, a new principle suggests 
itself:

Free energy principle (inference): q(w) ←� argmin
q

F

Here argmin
q

 means ‘choose the distribution q that makes the following term as small 

as possible’.
Notice that the form of Free energy principle (inference) is the same as that 

of Bayesian principle. In both cases you are told to perform a calculation and set 
q(w) equal to the resulting value. The difference is that Bayesian principle coun-
sels a direct calculation via Bayes’ theorem. In contrast, Free energy principle 
(inference) counsels what might be called an indirect calculation. You must 
assess candidate distributions q in order to find the one that produces the lowest 
value of F. Happily, in practice this can be done by trial-and-improvement rather 

(5)F(p, q, x) =
∑

w

q(w) log
q(w)

p(w, x)

4  In the active inference literature, the penalty for overfitting is often labelled ‘complexity’. The penalty 
for failing to explain the data is usually presented as a reward for explaining the data well; it is there-
fore introduced as the negation of the term we use here, and is called ‘accuracy’. Consequently, vari-
ational free energy is defined as the difference between complexity and accuracy. The goal of inference 
is described as minimizing complexity while maximizing accuracy. Our presentation is mathematically 
equivalent.
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than trial-and-error. Various algorithms for finding q are available depending 
on the details of the generative model (MacKay 2003, chapter 33). One of the 
developments that prefigured active inference was the implementation of such an 
algorithm in a neural network (Friston 2005).

In our cat example, p was given by the table of statistics of cat locations and 
noises, and we assumed the observer heard the cat meowing ( x = meow ). To 
solve the cat problem using Free energy principle (inference) we could use one 
of the aforementioned algorithms, or simply test lots of different values of q(w) 
to see which one produces the lowest value of F in combination with these val-
ues of p and x . Fortunately, the example is so simple that we can draw a graph 
of F against q and look for the smallest value (Fig.  2). The minimum point is 
at q(kitchen) = 4

5
 , implying that q(bedroom) =

1

5
 . This solution agrees with that 

given by Bayesian principle. It is important to note, however, that the situa-
tions in which variational inference is most useful are those in which the graph 
in Fig. 2 cannot be drawn. For illustrative purposes, we have here made use of 
information that is usually unknown to the agent. Instead, the optimal q would 
be found using an algorithm of the kind described above.

Fig. 2   Variational free energy F(p, q, x) as a function of the belief distribution q(w) when x = meow. 
The penalty for overfitting takes its minimum value when q(kitchen) = 0.6 = p(kitchen). That is 
because choosing a posterior that is identical to the prior is the extreme opposite of overfitting. The pen-
alty for failing to explain the data takes its minimum value when probability 1 is assigned to the cat 
being in the kitchen. That is because the kitchen is the best explanation for the cat’s meowing. Vari-
ational free energy F takes its minimum value at 0.8 (solid black circle) between the minima of its two 
component costs. Free energy principle (inference) therefore counsels that q(kitchen) = 0.8 =

4

5
 , in 

agreement with the solution given by Bayesian Principle. The code to generate this graph can be found 
at https://​github.​com/​steph​enfma​nn/​fep

https://github.com/stephenfmann/fep
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A simple model of action

Now suppose you can perform an action, z , that will place the cat in one of the 
two rooms. By changing the hidden state w you can indirectly change future val-
ues of x (Fig. 3).

While the previous section dealt with an inference rule—how to choose q(w)—
this section deals with a decision rule—how to choose z . Traditionally, decision 
rules stem from measures of preference, which we have not yet introduced. One 
of the potentially confusing aspects of active inference is that it treats the statisti-
cal model p as a measure of both probabilities and preferences at the same time. 
Later we will discuss possible justifications of this move; for now we assume it is 
interpretatively valid, in order to give as smooth an exposition as possible.

Recall that Free energy principle (inference) counsels choosing beliefs by 
minimising a function that measures the cost of inaccuracy. That function, F , is 
a sum of two kinds of penalty. Action selection is governed in the same way, but 
with a slightly different cost function called expected free energy and labelled G. 
The definition of G is closely related to that of F. The interpretation of the two 
penalty terms changes as the formalism is updated to reflect the fact we are now 
making measurements over expected future states. Since future states have yet 
to be observed, the agent must average over them to obtain expected values. The 
penalties are associated with failing to satisfy preferences and failing to mini-
mize future surprise.

Failing to satisfy preferences. q(w|z) is the assumed distribution over hidden 
states given our action. If we place the cat in the bedroom, where do we expect it to 
be? p(w) is now a preference distribution over hidden states. The first penalty term 
in G is a measure of how far the expected distribution of hidden states diverges from 
the preference distribution:

Compare Eq. (2). Again this is relative entropy, a standard way to measure the diver-
gence of one distribution from another. Again, its minimum value is attained when 
q(w|z) = p(w) for every state.

Not only is it unusual to treat p as a preference distribution, it is unusual to treat 
the goal of decision-making to produce a distribution that matches that distribution, 
rather than maximising expected utility. So perhaps it is best to keep in mind that 

(6)
∑

w

q(w|z) log q(w|z)
p(w)

Fig. 3   The basic model of action. An agent can produce an act, z , in order to bring about states w that in 
turn produce outcomes x . Active inference employs a controversial dual interpretation of p(w) and p(x) 
as probability distributions and preference distributions over hidden states and sensory states respectively
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‘preference’ in this sense might mean something different from ‘utility’ in the tradi-
tional sense.

Failing to minimize future surprise. One of the tenets of active inference is that 
agents should act to ensure that future data are not too surprising. The second pen-
alty term of G therefore measures how surprising future data would be, on average, 
if you performed z:

Compare Eq. (3). In addition to conditionalizing on z , this term also changes from 
calculating the logarithm directly to calculating its expectation over x . That is 
because x is here a future sensory state: we do not yet know what it will be, so we 
must employ its expected value. As a result, the inner term that begins with 

∑
x is 

the entropy of X—the expected surprise of your future observations—given that a 
certain hidden state w occurs.5 You want this inner term to be low. To do this, you 
should aim to bring about hidden states that lead to predictable observations. That 
means you should perform acts that give a high value to q(w|z) when w produces a 
low value for that inner term.

Overall, expected free energy is a sum of these penalties:

The third input to G is z rather than x . As mentioned above, this is because we are 
calculating the expected value over possible future sensory states, rather than infer-
ring on the basis of a sensory state that has just occurred.

As with F, the measure G suggests a principle:6

Free energy principle (action): z ←� argmin
z

G

In the same sense that Free energy principle (inference) approximates Bayesian 
inference, it has been suggested that minimizing expected free energy can be read as 
an approximation of optimal Bayesian design and Bayesian decision theory.7

It is worth restating just how unusual it is to interpret p as a measure of both 
probabilities and preferences. There is nothing wrong with treating a distribution as 

(7)
∑

w

q(w|z)
∑

x

p(x|w) log 1

p(x|w)

(8)

G(p, q, z) =
∑

w

q(w|z) log q(w|z)
p(w)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Penalty for failing to

satisfy your preferences

+
∑

w

q(w|z)
∑

x

p(x|w) log 1

p(x|w)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Penalty for failing to minimize

expected surprise of future data

6  Some treatments suggest variations on this principle e.g. Smith et al. (2022, Table 2, pp. 50–58). Here 
we have chosen the simplest possible form of action selection in order to highlight the concepts involved.
7  Claims about these links have been impressed upon us by proponents of active inference, but at the 
time of writing we have not investigated them in the kind of detail required to endorse or reject them. For 
textual resources relating to these claims see Da Costa et al. (2020, Sect. 7).

5  Although 
∑

x p(x�w) log
1

p(x�w) is an entropy term composed from a conditional probability, it is not con-
ditional entropy, which has a different definition. Note also that the term ‘surprise’ is sometimes used as 
a synonym for surprisal. The surprisal of x is log 1

p(x)
.
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a measure of preferences: distributions don’t demand to be interpreted as probabili-
ties, after all. But what is unorthodox, and in need of justification, is giving the very 
same mathematical term two different interpretations within the same equation. One 
thing worth noting is that in communication theory, p(x) is a probability and log 1

p(x)
 

is a measure of cost (specifically: the number of binary symbols you are required to 
expend in order to encode an outcome x, whose probability is p(x), under the 
assumption that your code is optimised for the distribution p). These are the compo-
nents of entropy, H(X) =

∑
x p(x) log

1

p(x)
 , which can be interpreted as the uncer-

tainty about the outcome of event X and as the optimal expected cost of encoding 
the outcome. We are not aware of proponents of active inference taking this interpre-
tive line, but it appears to be a viable option.

Finally, let us present a solution to the cat example. For the problem to have a 
determinate solution we need a conditional distribution q(w|z) . Let’s suppose that if 
we put the cat in the kitchen it usually stays there, but if we put it in the bedroom it 
tends to wander:

We obtain two different values of G, corresponding to the two different possible acts 
z (Fig. 4). The smallest expected free energy results from putting the cat in the bed-
room, so that is what you ought to do according to Free energy principle (action).

The duality between probability and preference can be made a little more intui-
tive with another example. Suppose you take your cat’s temperature three times a 
day for several weeks. If your cat is healthy, you will end up with a frequency dis-
tribution whose points fall between 38.1◦ C and 39.2◦ C. Now suppose you are asked 
what you would prefer your cat’s temperature to be in future. Assuming you want 
your cat to continue being healthy, you would prefer that its temperature fall within 
the range defined by this distribution.

There are at least two reasons why this interpretation should be distinguished 
from utilities as decision theory traditionally understands them. First, you should 
not simply prefer that your cat always be the temperature that happens to occur most 
often according to the frequency distribution. Healthy functioning entails some fluc-
tuation of temperatures throughout the day. The goal is not to maximise the value 
of this distribution, but to match future event frequencies to it. Second, preferences 
are just one consideration that must be taken into account when choosing actions. 
The preference penalty must be balanced against the surprise penalty. The tension 
between exploiting your circumstances to achieve your goals and exploring your cir-
cumstances to gain a better understanding of how acts produce outcomes enables 
some of the more complex applications of active inference.

q(kitchen|put cat in kitchen) =
9

10

q(bedroom|put cat in kitchen) =
1

10

q(bedroom|put cat in bedroom) =
5

10

q(kitchen|put cat in bedroom) =
5

10
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One of the ways proponents of the framework turn this unusual interpretation 
to their advantage is by casting action as a form of inference:

The mechanism underlying [minimizing expected free energy] is formally 
symmetric to perceptual inference, i.e., rather than inferring the cause of 
sensory data an organism must infer actions that best make sensory data 
accord with an internal representation of the environment.
Buckley et al. (2017: p.57), emphasis added

Hence the name ‘active inference’. The treatment of action as inference in dis-
guise helps avoid perceived problems with purely utility-based theories of deci-
sion-making (Schwartenbeck et al. 2015). By starting with an inference problem 
in the form of expected free energy minimization, preferences emerge as the first 
term of Eq. (8). But attempting to achieve these preferences must be balanced 
against the second term, which explicitly counsels minimizing future surprise. 
Proponents take this to be both more general and more principled than traditional 
behavioural theories, which employ utility functions alone (DeDeo 2019).

Further aspects of the duality between action and perception are brought to 
the fore by Friston’s more recondite work on selection dynamics. We now turn to 
these deeper themes.

Fig. 4   Expected free energy G(p, q, z) when putting the cat in the kitchen or bedroom. The value of G is 
lowest when z = bedroom , so Free energy principle (action) dictates that that is where you should put 
the cat. The surprise penalty for both acts is about the same, because in either case you cannot  
be very certain about whether the cat will be meowing or purring at the next time step. However,  
the preference penalty for putting the cat in the bedroom is relatively small, because 
q(w|put cat in bedroom) =

(
5

10
,

5

10

)
 is relatively close to the distribution p(w) =

(
6

10
,

4

10

)
 . Intuitively: if 

you want the cat to spend roughly equal time in both places, you shouldn’t put it in the kitchen, because it 
will stay there. The code to generate this graph can be found at https://github.com/stephenfmann/fep
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A simple model of selection

In our model x and z are the inputs and outputs of the agent. The set {x, z} is 
called the agent’s Markov blanket. This term is derived from Judea Pearl’s work 
on statistical inference using Bayesian networks (Pearl 1988). Roughly, in Pearl’s 
sense the ‘Markov blanket’ of a focal node is the set of nodes that provide total 
information about the focal node. However, Markov blankets have taken on a spe-
cial usage within active inference (Bruineberg et al. 2021). In the sense required 
here, a Markov blanket can be understood as the set of nodes that ‘screen off’ the 
agent from nodes considered external to it. Using the concept of a Markov blan-
ket, Friston has developed an account of selection based on a fundamental claim 
about free energy. He claims that Markov blanket systems that persist over time 
within certain kinds of (mathematically defined) environments will come to act in 
a manner that can be interpreted as minimizing F via inference and minimizing G 
via action.

Another toy model will help illustrate. Consider an agent whose surface tem-
perature x can safely lie between -3 and 3 units. If it drops to -4 or increases 
to 4, it dies. The external state w controls whether the temperature increases or 
decreases by 1 unit at the next timestep. The agent’s preference distribution over 
available temperatures might look something like this:

Notice that the value of w does not affect the agent’s preferences: all the agent 
directly cares about is its surface temperature, denoted by x . That is why the two 
rows are identical.

Suppose the agent can act to affect the external state. We will say it can try to set 
the value to either − 1 or +1, and in both cases it is successful 95% of the time:

Given this set-up and the model in Fig. 3 we have an agent who will survive if and 
only if it keeps x within a certain bound. When the temperature is high, it would be 
best for the agent to act with z = −1 . When the temperature is low, it would be best 
for the agent to act with z = +1.

To make the appropriate causal link between the current surface temperature 
and the act, the agent needs to employ an inner state y . It can initiate two strate-
gies: p(y|x) for inference, and p(z|y) for action. Let us allow the inner state to 
also take the values {−1, +1} . Then the question that active inference attempts to 
answer is, what can we say about the strategies of successful agents?

(9)

x

−4 − 3 − 2 − 1 0 1 2 3 4

w
+1

−1

(
0 0.025 0.05 0.075 0.2 0.075 0.05 0.025 0

0 0.025 0.05 0.075 0.2 0.075 0.05 0.025 0

)

w ∈ {−1,+1}

z ∈ {−1,+1}

z = −1 ⟹ p(w|z) = (0.95, 0.05)

z = +1 ⟹ p(w|z) = (0.05, 0.95)
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We will simulate the problem using two agents: a smart agent who tries to 
increase low temperatures and decrease high temperatures, and an oblivious agent 
who acts randomly. The smart agent sets y = +1 if x <= 0 , and y = −1 otherwise. 
The random agent chooses y by flipping a coin. Both agents set the act to be identi-
cal to the inner state, so in this simple case there is no difference between inference 
and action. In order to calculate variational free energy, we would usually need to 
make a choice about how the inner state y corresponds to a probability distribution 
over the external state q(w) . However, because p(w, x) has identical rows, the value 
of free energy is the same no matter what q is chosen. The only thing that affects F 
is therefore x.

Results from a single run are shown in Figs. 5 and 6. The smart agent keeps val-
ues of x mostly between − 1 and 1, which keeps F around 2 nats. The random agent 
eventually spirals away from the optimal sensory states, and its F increases to values 
much higher than those for the smart agent. After 80 timesteps the random agent 
dies: its value for x reached 4, and since p(w, 4) = 0 for both values of w , its free 
energy takes an infinite value.

The correspondence between high values of F and life-threatening states leads to 
a third form of the free energy principle:

Free energy principle (selection): any system that survives long enough will 
act so as to appear to be minimizing F.

This is not a normative principle—not a suggestion to agents regarding how they 
should perform inference—but a means of describing how agents behave. In recent 
work Friston gives a deflationary interpretation on which agents do not in fact mini-
mize anything, but perform acts which can be interpreted as minimizing F. That is 

Fig. 5   Variational free energy over time for an agent that controls its external state in a survivable 
manner. The agent’s control over its external state is 95% accurate; occasionally its grasp slips and free 
energy increases beyond the average. The code to generate this figure can be found at https://​github.​com/​
steph​enfma​nn/​fep

https://github.com/stephenfmann/fep
https://github.com/stephenfmann/fep
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the reason for the emphasized phrase ‘so as to appear to be minimizing F’. Despite 
this deflationary approach, there is a link between this and the earlier principle. 
Agents subject to Free energy principle (inference) ought to minimize F , so if this 
‘ought’ is tied to their survival, then the normative principle has the same underly-
ing justification as the descriptive principle.

Free energy principle (selection) interprets p as a kind of fitness function in 
the form of a probability distribution over sensory states. When we measured the 
temperature of our cat, we obtained a frequency distribution that acted both as a 
description of what happened when the cat was previously healthy and as a prescrip-
tion of what temperatures the cat should have if we want it to remain healthy. Free 
energy principle (selection) expands the scope of this basic idea, from cats to every 
biological system, and from temperature to every measurable property. Supposing 
our smart and oblivious agents stood at the end of a long line of evolved organ-
isms, the probability distribution given by the table in (9) could be constructed from 
the frequencies with which those ancestors found themselves in the relevant states. 
What is important here is that only direct ancestors count for tallying the frequen-
cies. Cousins of direct ancestors may have found themselves in the state x = 4 , but 
they immediately died. The event does not count towards the tally because it is not 
survivable. As a result, necessarily p(w, x) = 0 when x is an unsurvivable state.

The principle seems to imply that parts of the system (or the system-environment 
pairing) will come to correspond to the component terms of F. The way those parts 
change over time will correspond to F getting smaller. However, in this toy case, 
the inner state y cannot obviously be interpreted as corresponding to a distribution 
q because q does not affect the value of F. What is doing the work in this exam-
ple is the definition of p(w, x) : because states that are not survivable are assigned 
probability zero, their variational free energy is infinitely large. In this case, Free 

Fig. 6   Variational free energy over time for an agent that acts randomly. After 80 timesteps the agent 
dies and free energy takes an infinite value. The code to generate this figure can be found at https://​
github.​com/​steph​enfma​nn/​fep

https://github.com/stephenfmann/fep
https://github.com/stephenfmann/fep
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energy principle (selection) captures the rather banal point that systems can only 
ever occupy survivable states. If you are likely to be in states your successful ances-
tors were in, then you are likely to be successful. This trivial observation is reflected 
mathematically by the fact that variational free energy contains a reciprocal of 
p(w, x) : high values of p(w, x) therefore produce low values of F . Indeed, any func-
tion that contains this reciprocal (or its logarithm) as a component will be infinite 
when the probability is zero.

What, then, is the rationale for choosing variational free energy as the function 
we should interpret organisms as minimizing?

Ultimately, organisms are said to be acting so as to minimize the surprisal of x , 
defined as log 1

p(x)
 . But there are said to be limitations on the ability to minimize sur-

prisal ‘directly’, meaning that variational free energy must be used as a proxy. It is 
easy to show that variational free energy is an upper bound on surprisal.8 But any 
number of functions are upper bounds on surprisal. In the literature, different and 
not obviously compatible reasons are given for the move from minimizing surprisal 
to minimizing variational free energy. From a purely mathematical perspective, we 
can outline the set of systems for which surprisal is difficult to evaluate (MacKay 
2003, pp. 358 ff.): they are high-dimensional. So proponents of Free energy princi-
ple (selection) seem committed to the claim that the systems it refers to are high-
dimensional systems. But the justifications given in the literature do not obviously 
line up with this. As part of justifying the hypothesis that the visual system mini-
mizes variational free energy, Friston (2002, p. 118) asserts that “nonlinear mixing 
may not be invertible [...]. For example, no amount of unmixing can discern the 
parts of an object that are occluded by another.” On the other hand, Hohwy gives an 
informal account of what a creature would have to ‘know’ in order to perform 
Bayesian inference:

There is no way the creature can assess directly whether some particular state 
is surprising or not, to do that it would have to do the impossible task of aver-
aging over an infinite number of copies of itself (under all possible hypoth-
eses that could be entertained by the model) to see whether that is a state it is 
expected to be in or not.
Hohwy (2013, p. 52)

Hohwy gives a very different rationale from Friston. This move from minimiz-
ing surprisal to minimizing free energy is made very often in the literature. In this 
Topical Collection alone, it is cited or endorsed by Fabry (2021, p. 10), Constant 
(2021, p. 9), Kiverstein and Sims (2021, pp. 5–6), and Corcoran et al. (2020, p. 5). 
However, two unanswered questions remain. First, there is no clear justification for 
treating organisms as employing continuous (rather than discrete) generative mod-
els, and without this premise the claim of computational intractability is tenuous. 
Second, minimizing variational free energy is not the only way to minimize surprise. 

8  Proof: rearranging (4) gives F =
∑

w q(w) log
q(w)

p(w�x) + log
1

p(x)
 . The first term is a relative entropy, which 

by Jensen’s inequality is always greater than or equal to zero (Cover and Thomas 2006, p. 28). Therefore 
F ≥ log

1

p(x)
.
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Any non-negative function added to surprisal is an upper bound on surprisal. Propo-
nents need another premise that singles out variational free energy as the function 
organisms should be treated as minimizing.

Moving on to another interpretive issue, in each of the three examples discussed 
in this section, there has been a distinct role for the distribution p, and thus a distinct 
interpretation of each model: 

1.	 In our first model, p was a generative model employed by an agent. It was there-
fore interpreted as representing probabilities.

2.	 In our second model, in addition to representing probabilities, p measured the 
desirability of certain future states over others. It was therefore interpreted as 
representing preferences.

3.	 In our third model, p tallied the historical frequencies of a set of (hypothetical) 
ancestors. It was therefore interpreted as representing the fitness of different 
states.9

Supporters of the framework often point to the third role to explain how p can simul-
taneously fulfil the first two. A historical tally of successful states denotes prob-
abilities (i.e. ancestral frequencies) and preferences (i.e. future expected fitness). 
However, it does not immediately follow that the sense in which successful organ-
isms appear to minimize F is relevantly similar to the sense in which (for exam-
ple) predictive processing systems actually minimize F (see “A brief history of the 
free energy principle” section). Organisms are said to “entail a generative model” 
(Ramstead et al. 2021, p. 111) as a consequence of existing, whereas predictive pro-
cessing systems are said to employ a generative model that gets updated through 
prediction error minimization. It is not yet clear what warrants treating these two 
kinds of system in the same way. The organism that entails a generative model, 
and whose actions entail minimizing free energy with respect to that model, is like 
the ball bearing that entails a measure of gravitational potential energy, and whose 
‘actions’—falling to the lowest point in its local region—entail minimizing gravita-
tional potential energy. From the fact that a ball bearing can be treated as though it 
were attempting to minimize gravitational potential energy, it does not follow that a 
unified framework can be developed encompassing the ball and (for example) a spe-
cies of animal that always seeks the lowest point in its local area in order to evade 
predators. Entities that employ representations to act successfully are distinct in 
important ways from entities that can be treated as if they employ representations as 
a consequence of the effects of physical laws.

In sum, there is a disconnect between the two major domains in which the free 
energy principle is usually said to apply. The disconnect must be addressed if phi-
losophers—even those with mathematical inclinations—are to properly evaluate the 
active inference framework.

9  Sprevak (2020, Sect. 6.3) convincingly argues that Friston invokes two distinct senses of free energy, 
which here correspond roughly to roles 1 and 3. Sprevak cites Colombo and Wright (2018) as drawing a 
similar distinction. Williams (2021) distinguishes descriptive and explanatory versions of the free energy 
principle, seemingly tracking the same issue.
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Extensions to the models: more things to learn, more ways to act

If you open a random journal article in the active inference tradition, its scientific 
models—comprising agents who employ generative models to solve problems in 
their environments—will likely be much more complex than ours. Over the last dec-
ade much effort has been devoted to extending and adapting these basic models in 
order to fit them to empirical data. Active inference models can be augmented seem-
ingly indefinitely. Some examples follow.

We assumed that p(w, x) denoted both the agent’s generative model and the 
true statistical connection between unobserved state and observable data. Realisti-
cally, agents do not have perfect knowledge of these statistics. There are two ways 
to generalize the situation in this regard. First, agents can learn to improve their 
estimates of p(w) . Second, agents can learn the causal relationship p(x|w) . Since 
p(w, x) = p(w)p(x|w), this offers two distinct routes to learning a more accurate sta-
tistical model. Some of Friston’s early work is geared towards showing that these 
statistics can be learned by employing algorithms that minimize variational free 
energy through methods known as empirical Bayes (Friston 2005).

We also assumed that there was a single cause, w , of sensory data. Realisti-
cally, the external world is a panoply of criss-crossing causal paths. An adequate 
generative model would contain terms representing at least some of the interactions 
between unobservable states. Active inference captures these features by treating 
agents as employing hierarchical models of their external worlds. The first level of 
the hierarchy x is the sensory data, the second level w1 represents whatever causes 
sensory data, the third level w2 represents whatever causes w1 , and so on.

The simplest models assume that the agent is correct about all these features. The 
more features the agent can be incorrect about, the more features it is able to learn, 
and the more complex the generative model and method of updating. In principle, 
agents could be uncertain about any aspect of their representation of the world, so 
every model component can be subject to updating in light of evidence. Further-
more, in principle, the hierarchy of external causes is not restricted to a certain num-
ber of levels. Scientific models of agents performing active inference can therefore 
be extended indefinitely. This might be considered a problem when it comes to jus-
tifying the view: if the active inference framework can be extended to fit any empiri-
cal phenomenon, then there needs to be some principled way to assess the frame-
work, other than by fitting it to data. More broadly speaking, the worry is that we 
cannot empirically confirm or falsify scientific models that can, in principle, explain 
all possible states of affairs.

Regarding action, instead of a single act z the framework enables decisions about 
sequences of acts. Such sequences are called policies and are usually labelled � . 
Expected free energy can be calculated across an entire policy in order to determine 
which sequence of acts is optimal. Our model used only a single act, which is equiv-
alent to a policy that is evaluated at the next time step only.

A great deal of extra complexity can be added to the story about Markov blankets 
(Friston 2013). The Free energy principle (selection) is usually introduced with 
more complex mathematical terms like ergodic densities (Friston 2013), solenoidal 
flows (Aguilera et al. 2021), nonequilibrium steady-state (Ramstead et al. 2018), and 
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so on. One issue is whether or not this complexity is really needed to justify Free 
energy principle (selection). We saw above that a simple toy system will obey the 
principle by virtue of the definition of p. If proponents are aiming at a more precise 
claim, then perhaps the extra complexity is necessary. Some work along those lines 
is already tempering enthusiasm about the generality of the principle (Aguilera et al. 
2021); on the other hand, proponents are working hard to deliver pure mathematical 
results that can be evaluated in isolation from biological hypotheses (Da Costa, et al. 
2021; Friston 2019; Friston and Ao 2012; Friston et al. 2014). Active inference is a 
work in progress and should be evaluated as such.

A brief history of the free energy principle

The free energy principle is a modern incarnation of ideas that have been raised 
sporadically over at least the last five decades. It combines traditions from physics, 
biology, neuroscience and machine learning.

Free energy from physics to predictive processing

Although the term ‘variational free energy’ used in active inference has a purely 
statistical meaning, it first appeared in physics, where it has a sense connected to 
the more familiar physical meaning of energy. The term is used to help determine 
the states of certain physical systems (MacKay 2003, Sect. 33.1), (MacKay 1995, p. 
191 n. 1). In statistical mechanics, many systems have states whose probabilities 
are functions of their energies. For example, a state with very high energy might 
have a low probability of obtaining, and vice versa. However, the functions p that 
describe exactly how probability depends on energy can be very complex. Calculat-
ing the statistical properties of such systems is computationally intractable (MacKay 
2003, p. 423). Adequate approximations can be found by defining simpler probabil-
ity functions q and then minimizing variational free energy. The name arises from 
the fact that F is related to an existing term called “free energy” (MacKay 2003, p. 
423)—which explicitly denotes the more familiar physical sense of ‘energy’.

Variational methods were first deployed in physics, most famously by Feynman 
(1972).10 By the 1980s it had become clear that techniques from statistical physics 
could be adopted in machine learning (Fahlman et al. 1983; Hopfield 1982) (Hof-
stadter 1985, pp. 654–9). By at least 1989 Hinton and colleagues were referring to 
free energy in a purely statistical sense (Dayan et al. 1995; Hinton 1989; Hinton and 
van Camp 1993; Neal and Hinton 1998). The term ‘variational free energy’ came to 
mean ‘the function that must be minimized in order to improve your approximation 
of a system’s statistical properties’, even though physical energy was no longer the 
feature that determined those statistical properties. The systems in question were no 
longer ‘physical’ systems: they were sets of inputs to an automated inference engine 

10  We have unfortunately found it difficult to identify the terms in Feynman (1972) that correspond to 
the terms subsequently used in machine learning and active inference. Nonetheless, it is common to see 
Feynman’s book cited in this connection.
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whose job was to reconstruct the causes of those inputs (MacKay 1995). Some of 
the methods developed in this body of work became known as ‘variational Bayesian 
inference’ or just ‘variational Bayes’, because of the relationship with Bayes’ rule 
discussed in “Simple models of the free energy principle for inference, action, and 
selection” section. These techniques continue to be used, and are now a standard 
method in statistics and machine learning (Bishop 2006, Sect. 10.1). Variational free 
energy is sometimes called an ‘objective function’, which is the general name for a 
function that must be minimized (or maximized) to solve an inference task.

Because forerunners of these methods were implemented in neural network mod-
els, the question of biological plausibility was often raised (Hinton 1989,  p. 143) 
(Dayan et al. 1995, pp. 899–900). But the most successful neural models were per-
haps those spawned by the predictive processing tradition. Predictive processing was 
inspired by predictive coding, a technique in communications engineering (Elias 
1955). In the 1980s and 1990s neuroscientists began investigating its plausibility as 
a model of visual perception (Kawato et al. 1993; Rao and Ballard 1999; Srinivasan 
et al. 1982). In the early 2000s, Friston (2002, p. 131) claimed that a predictive pro-
cessing system could be constructed that performs variational inference (see also 
Friston 2003, pp. 1339–1340).

Very roughly, we can understand the relationship between these aspects in terms 
of Marr’s hierarchy, which is usually said to have three levels: computational, algo-
rithmic, and implementational (Marr 1982). In Friston’s scientific model of pre-
dictive processing, the computation is variational inference. The algorithm is 
the expectation-maximisation algorithm, a two-step process whereby two differ-
ent mathematical operations are performed iteratively. Neal and Hinton (1998) had 
already shown that a version of that algorithm minimizes variational free energy. 
Friston claimed the algorithm could be implemented by the activities of (and struc-
tural relations between) individual neurons (for a simplified example see Bogacz 
2017, Sect. 2–3).

As part of this work, Friston (2003, 2005) began to make strong claims about the 
generality of his scientific model. He also cited empirical evidence that supposedly 
matched model behaviour. This generality, and concordance with data, led him to 
develop the free energy principle.

Free energy minimization as a general principle

Most proponents of predictive processing assert relatively modest claims. Friston 
began similarly, claiming we have evidence to believe the visual cortex implements 
a hierarchical generative model with variational free energy as the objective func-
tion (Friston 2003). By 2006, however, he extrapolated from this position to the 
much stronger claim that minimizing free energy is almost everything the brain does 
(Friston et al. 2006). Not only inferential processes, but also action, were said to be 
geared towards minimizing free energy. He reached these conclusions seemingly by 
extending earlier predictive processing models and identifying empirical phenom-
ena his models faithfully mimic.
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By 2012, Friston was asserting that minimizing free energy is almost everything 
every biological system does (Friston 2012, 2013) (earlier examples of claims of this 
kind appear in Friston and Stephan (2007)). Rather than being based on extensions 
to existing scientific models, this generalized claim is based rather on considerations 
of selection (“A simple model of selection” section). It is worth emphasizing that 
the proposed justification for the biological version of the free energy principle is 
different from the justification of the original, brain-related claims. Originally, the 
principle was a claim about the generality of scientific models of predictive process-
ing. Gershman (2019) has noted that the free energy principle inherits some justi-
fication from the explanatory success of those models, which have been discussed 
extensively in the literature on computational cognitive neuroscience (Huang et al. 
2019; Rao and Ballard 1999; Wiese and Metzinger 2017), theoretical neuroscience 
(Abbott and Dayan 2005, Sect.  10.2) and philosophy (Cao 2020; Clark 2013). In 
contrast, the biological version of the claim relies on a priori justification via math-
ematical proofs of statements like Free energy principle (selection). There is no 
pre-existing scientific modelling practice whose success extends to active inference 
here. Proponents must find empirical support themselves.

The past decade has seen applications and elaborations of active inference for 
biology. Calvo and Friston (2017) apply the framework to plant activity. Tschantz 
et  al. (2020) simulate bacterial chemotaxis, and give an active inference interpre-
tation. Three contributions to the present Topical Collection discuss E. Coli in an 
active inference context: Corcoran et al. (2020); Kirchhoff and van Es (2021); and 
Kiverstein and Sims (2021). Baltieri and Buckley (2019) argue that a certain kind 
of control process called Proportional-Integral-Derivative (PID) control, which has 
been used to explain the behaviour of bacteria and amoebae, can be understood 
in terms of active inference. The question for philosophers is what theoretical or 
explanatory virtues result from applying active inference in this way. In “Dialec-
tic: the free energy principle and related claims” section  we discuss the dialectical 
structure of active inference, highlighting key questions philosophers need to ask in 
order to evaluate the framework.

Dialectic: the free energy principle and related claims

Mathematical, empirical, and general claims

Part of the difficulty in understanding the body of work associated with the free 
energy principle is a lack of transparency over the dialectic. We think a great deal 
of confusion can be overcome by considering three kinds of claim. First, there are 
mathematical claims. These are claims about the status of theorems, features of 
scientific models and statistical techniques. Some of the core mathematical features 
of active inference predate the framework itself (“A brief history of the free energy 
principle” section); however, Friston and colleagues have since introduced many 
novel mathematical elements. Importantly, claims in this category do not need to be 
interpreted as statements about real systems in order to be evaluated. Second, there 
are empirical claims about cognitive and biological mechanisms, how brains and 
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bodies actually work. These are the remit of cognitive neuroscience and biology. 
Third, there are general claims that typically abstract across a wide class of empir-
ical claims. Active inference grew out of an increasingly generalized explanatory 
approach to cognition, such that its central claims crossed over from the empirical to 
the general category.

When these categories are distinguished, it is easier to see the dialectical relation-
ship between their constituent claims, and to delineate specific topics for investiga-
tion. For example, discoveries about neural network capabilities (mathematical) are 
sometimes used to justify hypotheses about neural organisation in biological brains 
(empirical). Such arguments are not restricted to the free energy program, but are 
part of a broader disciplinary movement known as computational cognitive neuro-
science (Gregory Ashby and Helie 2011). Similarly, general claims are sometimes 
used to justify the relevance of empirical claims, by providing reason to believe 
that all biological systems minimize free energy. And mathematical claims support 
general claims when mathematical theorems and scientific models are argued to be 
widely applicable to real biological systems.

In the remainder of this subsection we describe each category in more detail and 
highlight key claims in each. In the following subsection we outline dialectical links 
between categories. Throughout, we use Hamilton’s rule—which will be familiar 
to philosophers of biology—to illustrate the different categories and their relation-
ships. Hamilton’s rule can be construed as a mathematical claim when interpreted 
as a statement as part of a mathematical model. It can also be construed as a general 
claim when interpreted as a statement about conditions on selection for genes influ-
encing social behaviour in real populations. And the rule can guide the verification 
of empirical claims about the mechanisms of social behaviour, e.g. the genetic con-
trol of parental behaviour towards offspring.

Mathematical claims

Mathematical claims are statements about mathematical models and objects. This 
category contains all of the formal statements deployed as part of modelling prac-
tices in biology and cognitive science, including mathematical claims relating to 
active inference. For example, assertions about the computational abilities of neural 
networks belong to this category, as long as such claims do not mention the explana-
tory power of neural networks with regard to brains.

To take an example better known to philosophers of biology, Hamilton’s rule 
states the conditions under which genes for certain kinds of socially-oriented behav-
iour would be favoured by selection. In essence, Hamilton’s rule is a mathematical 
statement constructed as part of a model of an evolving population. It can be eval-
uated—i.e. proven, and have its proof checked—without recourse to real systems. 
Because of the way the mathematical model is defined, it is not necessary that there 
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be any real examples of selection for Hamilton’s rule to be true within its math-
ematical context.11

For an example from active inference, the claim that a small neural network is 
capable of minimizing variational free energy via encoding prediction error is verifi-
able by actually building such a network, as Bogacz (2017, Sect. 2–3) shows. Recent 
models of variational message passing constitute similar claims, with message-pass-
ing being a distinct way to minimize variational free energy (Parr et al. 2019)—a 
different implementation and algorithm, but the same computation. Similarly, it is 
possible to verify the claim that variational inference approximates Bayesian infer-
ence by demonstrating that variational free energy takes its lowest value when the 
true posterior is used.

Friston makes a number of claims that can be evaluated mathematically. But the 
formal framework he employs is idiosyncratic, and based upon work that is already 
complex. These novel claims are difficult to assess for philosophers, even those of 
us with a mathematical background. The good news is that because the mathemati-
cal claims are screened off from questions about realism and model interpretation, 
they can be evaluated in isolation. Indeed, the mathematics of active inference are 
still being developed (Da Costa, et al. 2021), so it is possible that it currently lacks 
a coherent, comprehensive formalism. Proponents have pointed out to us that that 
is the state of many early sciences: often mathematical rigour comes after scientific 
discovery and theory-building.

The term ‘free energy principle’ is sometimes used to denote a purely mathemati-
cal statement (see for example Friston and Stephan 2007, p. 434). Andrews’s contri-
bution to this Topical Collection endorses this usage. Their opponents are those that 
critique the free energy principle under the assumption that it is truth-apt. Andrews 
contends that the principle is not truth-apt, because as a set of mathematical tools 
it does not by itself entail any empirical claims. For example, Andrews claims that 
“when we take the existence or qualities of a model to constitute knowledge of the 
natural world we make a category error and reify the model” (Andrews 2021, p. 14). 
Interestingly, Andrews downplays the relevance of general claims—the feature of 
active inference usually emphasised by Friston and colleagues.

Models of active inference may bear interesting relations to other formal con-
cepts in philosophy. Mann & Pain argue that models in which the free energy prin-
ciple is formulated are importantly related to models in which the concept of proper 
function is defined (Mann and Pain forthcoming). Proper function, a species of 
selected-effects function defined by Millikan (1984, Sect. 1–2), has applications in 
the philosophies of biology, cognitive science, language and mind. By drawing this 
comparison, Mann & Pain aim to demonstrate the relevance of claims made by pro-
ponents of active inference to traditional debates in those subjects, as well as high-
light the distinction between claims about models and claims about real systems.

11  We use the term ‘mathematical model’ to mean, very roughly, a scientific model that need not have a 
real system as its target.
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Empirical claims

Empirical claims are statements about the structure, function and operation of real 
biological systems. For example, the claim that the mammalian visual system works 
via prediction error feedback is an empirical claim. With regard to mainstream biol-
ogy this is probably the largest category. Most experimental science and fieldwork is 
geared towards gathering evidence to establish or refute empirical claims.

Different empirical claims can comprise specific instances of the same general 
claim. For example, Bourke (2014, Table 1, p. 3) presents a diverse list of socially-
oriented behaviours across a variety of species, some of which can be explained 
with respect to Hamilton’s rule. Although Hamilton’s rule does not mention particu-
lar behaviours (nor even particular species), empirical claims can be seen as instan-
tiations of the more abstract rule. Similarly, although the active inference framework 
does not mention specific systems, we can ask whether its features are instantiated 
in particular cases. The empirical category includes specific features of brain activ-
ity that have been argued to be better explained by appeal to minimisation of free 
energy. For example, Friston and Stephan (2007, p. 429) claim that the brain uses a 
mean-field approximation to minimize free energy. This claim is empirical because 
it is in principle verifiable: either the brain possesses structures corresponding to the 
different components of a mean-field approximation that change according to the 
dynamics of free energy minimization, or it does not. The importance of computa-
tional cognitive neuroscience is that it provides methods for assessing and verifying 
claims like these.

Both Corcoran, Pezzulo and Hohwy’s and Kiverstein and Sims’s contributions 
to this Topical Collection make empirical claims about the nature of allostasis—
“anticipating needs and preparing to satisfy them before they arise” (Sterling 
2012, p. 5)—and both are interested in demarcating behaviour that is distinctively 
cognitive. Corcoran et al. (2020) use the free energy principle to conclude that the 
term ‘cognition’ should be reserved for organisms that engage in counterfactual 
inference, and hence that allostasis is not properly cognitive. Kiverstein and Sims 
(2021) disagree. On their reading of the free energy principle, what they call “allo-
static control” is a properly cognitive process. The range of organisms to which the 
term ‘cognition’ applies thus extends beyond those that have a nervous system. In 
both cases, these claims are in principle verifiable: either allostasis operates accord-
ing to the dynamics of free energy minimisation, or it does not. If, for instance, it 
turns out that allostasis operates according to the dynamics of reinforcement learn-
ing, then free energy treatments are in error.12

At the same time, empirical claims are sometimes used to justify aspects of the 
modelling framework. The problem is that there has been no independent veri-
fication of the soundness of these connections. For example, Friston and Stephan 
(2007, p. 432) assert, “At the level of perception, psychophysical phenomena sug-
gest that we use generalised coordinates, at least perceptually: for example, on 

12  Here we assume reinforcement learning constitutes a distinct kind of computation, incompatible with 
free energy minimization—though they are sometimes taken to be consistent with each other (e.g. Da 
Costa et al. 2020, Fig. 3 p. 11).
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stopping, after looking at scenery from a moving train, the world is perceived as 
moving but does not change its position.” We do not know of any computational 
cognitive science work that explicates the sense of ‘generalised coordinates’ and 
confirms whether the phenomenological evidence described by the authors in fact 
supports their claims.

Empirical claims include negative claims. For example, Friston (2009,  p. 298) 
states “there is no electrophysiological or psychophysical evidence to suggest that 
the brain can encode multimodal approximations”. He uses this as evidence for a 
positive claim about the mathematical features of distributions the brain does 
encode, on his view. Again, this is the kind of claim on which computational cogni-
tive scientists could weigh in.

Several other empirical claims, said to be derivable by applying active inference 
models to real systems, are listed by Da Costa et al. (2020, Table 1 pp. 3–4). During 
the last decade, the rate at which these hypotheses have been formulated has out-
paced the ability of independent evaluators to determine whether they can be sub-
stantiated or not. Proponents will point to a long list of citations, but the complexity 
of the mathematics makes determining the relevant empirical evidence difficult. We 
need computational cognitive science to determine what kinds of evidence would 
count in favour of empirical claims made on the basis of active inference.

General claims

General claims are highly abstract or generalized empirical claims. This includes 
empirical claims whose scope is very wide, perhaps ranging over every organism or 
biological system.

When formulated as a claim about real populations, Hamilton’s rule fits this 
description. This is a general claim because its scope is so wide: it applies to every 
population of genes subject to selective forces, stating conditions under which a 
gene influencing behaviour that impacts the fitness of social partners would be pro-
moted by selection.

General claims abstract from empirical claims. Empirical claims can therefore be 
derived by replacing abstract terms with concrete cases. For example, Hamilton’s 
rule could be related to specific empirical claims by replacing the abstract notion 
of ‘a gene for cooperative behaviour’ with a specific gene, and replacing the terms 
for cost, benefit and relatedness with estimated values for real populations (Bourke 
2014).

Because proponents of active inference often move swiftly between the mathe-
matical framework and real systems, some general claims have been given the label 
‘the free energy principle’. For example,

The free-energy principle discussed here is not a consequence of thermody-
namics but arises from population dynamics and selection. Put simply, systems 
with a low free-energy will be selected over systems with a higher free-energy.
Friston and Stephan (2007, p. 451)
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It seems that “systems” here are real systems such as organisms. But sometimes 
the exposition of the principle blurs the lines between mathematical and general 
claims. For example, Hohwy says that “FEP [the free energy principle] moves a pri-
ori—via conceptual analysis and mathematics—from existence to notions of ration-
ality (Bayesian inference) and epistemology (self-evidencing). [...] [T]his a priori 
aspect is central to how we should assess FEP” (Hohwy 2020, p. 8); later continu-
ing: “FEP says organisms “must” minimise free energy [... this] is a ‘must’ of con-
ceptual analysis and mathematics, for that is all that was needed to arrive at FEP. 
FEP is therefore rightly called a ‘principle’ rather than a law of nature” (Hohwy 
2020,  p. 8) (for Hohwy, a principle is something that may or may not hold of a 
given system). By deducing a statement about real organisms from mathematical 
premises, Hohwy seems to be overriding the distinction between mathematical and 
general categories. In contrast, Andrews distinguishes them while allowing that the 
free energy principle has both mathematical and general aspects:

Not unlike Charles Darwin’s theory of evolution by natural selection, the free 
energy principle can be interpreted alternatively as mathematical model or 
as meta-theoretical framework; [...] It is only as its constituent variables are 
mapped onto measureable, observable (or inferable, latent) processes in the 
world that it attains genuine explanatory power, and becomes capable of gen-
erating testable hypotheses.
Andrews (2017, p. 14)

Whether or not there is a claim deserving the title of the free energy principle, and 
whether or not it is really mathematical or general, is moot: what matters is that 
there is a mathematical claim—something akin to Free energy principle (selection), 
but formulated in a more complex mathematical setting—and there is a correspond-
ing general claim. Given this, they ought to be evaluated separately.

The distinction between general and empirical claims is not sharp. An empiri-
cal claim that generalizes over a species or a class of biological systems may not 
be broad enough to deserve being called general, but a claim that generalizes over 
entire kingdoms may well be. The point of distinguishing the categories is to high-
light the different kinds of justification that each type of claim requires. Empirical 
claims may be made plausible by scientific modelling and wide generalisations, but 
they can only be ultimately validated through evidence. General claims can also be 
made plausible by modelling, but can only be fully validated by confirmation of the 
empirical claims they entail.

The most pressing philosophical issues about general claims are familiar from 
the literature on scientific models. The models involved in these claims are typically 
extremely abstract, and a common refrain regarding biological systems is that models 
which attempt to explain everything end up explaining nothing. This line of thought 
is often cashed out in terms of trade-offs between generality, realism and precision. 
In particular, drawing on Levins’ work, it is thought that maximising the generality 
of a model will require sacrifices in terms of realism and/or precision (Levins 1966; 
Weisberg 2006). Realism, or accuracy, is typically understood in terms of the amount 
of causal structure that a model represents. Consequently, the more target systems a 
model encompasses (i.e. the more general it is) the less accurately it represents them. 
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Precision is understood in statistical terms, as the closeness of repeated measurements 
of some quantity. Consequently, as a model’s parameters become more finely speci-
fied, the number of systems which lie outside those parameters increases (i.e. the less 
general it is). So it looks as though the free energy principle will be useful for building 
highly general models that will score low on realism and/or precision. Levins’ work is 
normally thought to deliver a pragmatic lesson: we cannot produce one model to rule 
them all, so which trade-off you make should be relativized to your aims. For instance, 
models that score highly on realism—and thus capture a lot of the causal structure of a 
system—will be better for predicting the effects of some intervention.

In their contribution, Colombo and Palacios take up this line of critique (Colombo 
and Palacios 2021). On their analysis, the free energy principle’s “...foundations in 
concepts and mathematical representations from physics allow free energy theorists to 
build models that are applicable to theoretically any (biological) system” (p. 19). How-
ever, “...achieving this generality comes at the cost of minimal biological realism, as 
those models fail to accurately capture any real-world factor for most biological sys-
tems” (p. 19). Carls-Diamante raises a challenge for the generality of the principle in 
the form of daredevils, humans who seem to seek out surprising states (Carls-Diamante 
forthcoming). There are solutions available to proponents of the principle that would 
widen the class of entities to which it applies—by encompassing these aberrant indi-
viduals—but would simultaneously jeopardise the ability to provide realistic or precise 
models of behaviour—because those individuals’ cognitive mechanisms may differ 
from the norm. In striving to attain universal applicability, active inference must deploy 
different models to capture widely varying behaviour while still asserting that those 
models belong to a single family. This is a difficult balance to strike.

If all this is right, then it suggests that the usefulness of models produced by active 
inference will be importantly restricted (Brown et al. 2020). These concerns speak also 
to the practicality and disciplinary scope of the free energy principle. If its utility lies 
in its ability to provide a general theory of biological processes, but what working biol-
ogists need are models high on precision and/or realism, then its application will be 
confined to theoretical and philosophical aspects of biology. If, however, it can deliver 
the latter type of models, then it will have potential implications for biology in prac-
tice. On the other hand, proponents of active inference might simply reject the terms 
of the trade-off outlined above. Bhat and colleagues’ contribution takes this line (Bhat 
et al. 2021). They seek to explain certain correlations between autoimmune disease and 
psychiatric disorder. They argue that a general active inference model encompassing 
immunology and psychology explains increased sensitivity across both systems. Unify-
ing psychiatric disorders and immune responses using the free energy framework has, 
in their view, consequences for the treatment of disorders such as schizophrenia and 
Cushing’s syndrome.
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Justificatory links between dialectic categories

How can mathematical claims justify empirical claims?

Brain structures posited by empirical claims are often related to properties of arti-
ficial neural networks. As mentioned above, computational cognitive neuroscience 
is the branch of cognitive science dedicated to constructing scientific neural models 
and evaluating their biological plausibility. Scholars have long appealed to scientific 
models originally produced in the context of machine learning to explain biological 
facts (Dayan et al. 1995).

At this point, a few remarks about the relationship between machine learning and 
neuroscience are in order. Machine learning intersects with neuroscience in at least 
two distinct ways. First, large datasets derived from experiments and measurements 
can be processed and analysed using machine learning techniques. In this regard, 
the relationship between the two fields is no different than that between machine 
learning and any other branch of science that generates large datasets that need to be 
processed efficiently. Call this the general relationship. In contrast, there is a unique 
connection between machine learning in the context of neural network models and 
neuroscience. There is a substantial body of scientific and philosophical work dedi-
cated to the question of correspondence between scientific neural models and actual 
neural systems, i.e. biological brains. This relationship is familiar to philosophers of 
mind and cognitive science, with its roots in connectionism of the 1980s. Because 
these issues are unique to the relationship between machine learning and neurosci-
ence, call it the special relationship.

The general relationship uses certain modelling techniques to discover what the 
brain is doing; the special relationship asserts that certain modelling techniques are 
what the brain is doing. With regard to the free energy principle, what we are inter-
ested in is the special relationship. Whether scientific neural models can explain 
brain functioning depends in large part on how well those models correspond to bio-
logical brains. This is the remit of computational cognitive neuroscience. In general, 
justifying empirical claims by appealing to a scientific model requires critical evalu-
ation of how good the model is. This is the remit of both scientists and philosophers 
of science.

The mathematical �→ empirical direction invites philosophical analysis due to 
novel interpretations of scientific model terms. For example, in active inference it 
is claimed that the same term p can be interpreted as representing both probabili-
ties and preferences. Mathematically there is nothing stopping this, but the problem 
comes when we seek the real entity that corresponds to that term in the real world. 
Is it possible for a component of a neural system to represent probabilities and pref-
erences at the same time? It is not even clear that this is what is being claimed, 
because some proponents takes a deflationary or instrumentalist stance on active 
inference models, disclaiming the requirement that mathematical terms map neatly 
onto components of real systems. It remains an open question whether this instru-
mentalist stance is justified merely because the scientific model (or map) does reflect 
all variables in the target system (territory). For example, in the philosophy of sci-
ence literature about model construction some (e.g. Williamson 2017) suggest that 
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scientific model building is entirely consistent with scientific realism. This is a dis-
cussion still to be had in the active inference literature.

Typically biologists and computational cognitive neuroscientists are more modest 
than proponents of active inference. In mainstream science, models are often pre-
sented with caveats about their idealised nature and indications of how their realism 
can be improved. In contrast, it sometimes seems as though proponents of active 
inference take their scientific models to be definitionally accurate. Active inference 
doesn’t get a free pass on model validation. Its proponents almost certainly know 
this, but an outsider reading the literature might wonder why their dialectic slips so 
easily between claims about scientific models and claims about real systems. We 
think it is because the need for justification has not been sufficiently emphasised. 
This is probably a cultural accident rather than genuine overconfidence.

Consider an example from the active inference literature. In a discussion of tech-
niques the brain might be using to minimize variational free energy, Da Costa et al. 
(2020, p. 10) assert that “the marginal free energy currently stands as the most bio-
logically plausible.” It is not clear how the reasons they cite lead to that conclu-
sion. It seems that marginal free energy minimization is the most accurate technique 
for which there is a known neural implementation (that is, a neural network model 
whose dynamics are at least consistent with what is observed in the brain). But it is 
not clear why we should believe the brain employs the most accurate technique. It is 
also not clear whether consistency provides strong evidence in favour of biological 
plausibility. Sometimes Friston describes a scientific model as biologically plausible 
just because it is a neural network model. Again, computational cognitive science 
can weigh in on the question of what makes a neural network model of cognition 
more or less plausible.

Finally, although the justificatory link in question concerns the special rela-
tionship between machine learning and brains, some of Friston’s work is squarely 
within the general relationship. For example, his proposals about “variational fil-
tering” (Friston 2008) are engineering techniques for building machine-learning 
systems. These systems would be used to process data from neuroimaging studies. 
The important aspects of these proposals lie with the data-processing abilities of the 
engineered system, not any correspondence there may be between such systems and 
biological brains (see also Colombo and Palacios 2021, pp. 20–1). It might be the 
case that Friston’s claims pertaining to the special relationship were inspired by or 
otherwise related to his earlier work developing such techniques. But more prem-
ises are needed to support claims of correspondence between a brain and a scientific 
neural model, beyond the mere fact that one was inspired by the other. After all, 
connectionism was itself inspired by neuroscientific discovery of brain structure, but 
this did not automatically render connectionism a viable explanatory framework.

How can mathematical claims justify general claims?

When it comes to justifying the active inference framework, emphasis is usually 
placed on Free energy principle (selection). For example, Ramstead et al. (2018) 
assert:
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The FEP is a mathematical formulation that explains, from first principles, the 
characteristics of biological systems that are able to resist decay and persist 
over time. It rests on the idea that all biological systems instantiate a hierarchi-
cal generative model of the world that implicitly minimises its internal entropy 
by minimising free energy.
Ramstead et al. (2018, p. 2)

To our knowledge, this mathematical claim has not been independently evaluated, 
though Aguilera et al. (2021) offer reasons to think the constraints on systems that 
satisfy it are more restrictive than proponents of active inference usually assume. 
Similarly, it is difficult to evaluate the corresponding general claim because there is 
not enough understanding of the mathematical theorem and how it maps onto real 
systems. Recently, however, Beni (2021) and Bruineberg et al. (2021) have critiqued 
the framework on grounds of its applicability to real systems. We are starting to 
see critical analysis of active inference from outside the tradition. This is a healthy 
development.

The analogy with Hamilton’s rule can help illuminate the situation. Hamilton’s 
rule as a mathematical statement is reasonably simple and relatively easy to prove 
within a given mathematical framework. Variations on the rule can be clearly 
defined mathematically because of the precision offered by formalism. Interesting 
questions arise when it comes to using the rule, or its variations, to explain the evo-
lution of social behaviour. But its relative simplicity enables philosophers to under-
stand the basic components of Hamilton’s rule and what the rule says, even though 
there are still interpretive questions to ask (Birch 2014).

Constant’s contribution to this Topical Collection uses a mathematical claim to 
make a general claim (Constant 2021). On the basis of a numerical example, he 
argues against the misconception that minimising free energy entails future survival. 
Rather, he believes the converse is true: an organism that has survived up to the pre-
sent must have done so by minimizing free energy.

How can general claims justify empirical claims?

Proponents of active inference distinguish process theories (roughly, our category 
of empirical claims) from normative principles (roughly, general claims). For 
example, Hohwy (2020) argues that the generalized form of the free energy prin-
ciple should be treated as a regulatory principle guiding the construction of process 
theories. The idea is to add assumptions about the structure of specific systems to the 
general claims in order to yield testable empirical claims. These would include com-
putational, algorithmic, and implementational claims about brain activity. However, 
Parr and Friston (2017,  p. 4) use the phrase “computational architectures implied 
by active inference”, which conceals the fact that extra premises are required to get 
from general claims at the core of active inference to empirical claims about system 
architectures.

In their contribution Kirchhoff & van Es are interested in whether or not active 
inference can overcome what they call the universal ethology challenge (Kirchhoff 
and van Es 2021). Active inference can only unify biology and cognition if low-level 
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biological systems are explained in terms of inference, but—so the challenge goes—
explaining such systems does not require inference. So active inference cannot unify 
biology and cognition. Kirchhoff and van Es disagree with this assessment. They 
argue that it is possible to explain chemotaxis in bacteria using inference. They ten-
tatively conclude that this gives us reason to think that active inference might be 
able to address the universal ethology challenge.

While Kirchhoff and van Es use an empirical example to motivate a general 
claim, Fabry’s contribution uses an empirical example to restrict a general claim 
(Fabry 2021). She distinguishes between three types of niche construction: selec-
tive niche construction, developmental niche construction, and organism-niche coor-
dination dynamics. She then assesses attempts by proponents of extended active 
inference (who marry active inference with ideas from extended cognition research) 
to account for these various types of niche construction. She concludes that, while 
extended active inference is successful in the case of organism-niche coordination 
dynamics, it fails to explain selective niche construction and developmental niche 
construction.

Concluding remarks

The active inference framework is incredibly ambitious in its explanatory scope. 
From humble beginnings as a theory of brain function, it is now positioned as a 
framework for understanding life itself. There is a critical tradition in the philoso-
phy of biology, inspired by Levins, with regard to such ambitions. Many, then, will 
approach active inference with scepticism. Healthy scepticism is a good thing, but 
healthy scepticism is informed scepticism. Unfortunately, getting one’s head around 
the details of active inference is no small task.

Our goal in this introduction has been to clarify the basic mathematics, history 
and internal dialectics of active inference, and draw attention to some key concerns. 
With these details on the table, philosophers of biology are in a better position 
to critically evaluate the framework. We look forward with interest to seeing the 
results.
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